Series 30/40 BASIC Guide

DOC-IWS-280
Revision B
September 1996

Nematron Corporation
5840 Interface Drive

Ann Arbor, Michigan 48103
Phone: 734-214-2000

Fax: 734-994-8074

Nematron

Open minds. Open systems. Real solutions.

ii Series 30/40 BASIC Guide

Important Information

AN

Note: This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. Theselimitsare
designed to provide reasonabl e protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interferenceto radio
communications. Operation of this equipment in aresidential areaislikely to
cause harmful interference in which case the user will be required to correct the
interference at his own expense.

Electrical Shock Hazard! Do not operate the unit with its back cover removed.
There are hazardous voltages inside. Servicing of the equipment should only be
done by qualified and authorized personnel.

This publication isissued on condition that it is not copied, reprinted, or
disclosed to athird party, either wholly or in part, without the prior written
consent of Nematron Corporation.

Nematron Corporation assumes no liability or responsibility for the loss or
damage, direct or indirect, arising from the use of this product. Nematron
Corporation reserves the right to change this product’ s specifications without
notice.

This document is based on information available at the time of its publication.
While efforts have been made to be accurate, the information contained in this
guide does not purport to cover all details or variations in hardware and software.
This guide may describe features which are not present in all hardware and
software systems.

Nematron and FloPro are registered trademarks, and NemaSoft, PowerVIEW,
Industrial Control Computer, Industrial Workstation, and AutoNet are
trademarks of the Nematron Corporation. All other brand or product names are
trademarks or registered trademarks of their respective companies.

Release Date Revision
July 1993 Original release
September 1996 Addition of IWS-40

©1993, 1996 Nematron Corporation, All Rights Reserved. Printed in U.S.A.

Contents

Chapter 1 Getting Started
SYMDOIS. . 1-1
Hardware and Software RequiremMents...........ccoocueeveerieninieeesie e 1-3
Chapter 2 Display and Keyboard
DISPIAY ..ttt e 2-1
CharaCter SEL.......ooiiiieiei et 2-1
Contrast AdJUSEMENTooivieiiiieie e 2-1
KEYDO0AIT.... oo 2-1
Keyboard Faults..........cociiiiiiiiecee e 2-1
Keyboard INSErTS.o 2-1
Chapter 3 Hardware Installation
Chapter 4 Software Installation
POWEr-UDP SEQUENCE.......eeiiiiiie ettt 4-1
Downloading FirmWare.........c.cooueeiieeiiieeie et 4-1
Required EQUIPMENTc.ciiiiicee e 4-2
DowWNloadingcoveeiieiiii e 4-2
Version NUMDENS.ooiiee e 4-4
Chapter 5 On-Line Configuration

Accessing the On-Line Configuration Menu...........ccccoeveeiieniienenee 51
Main Configuration MeNU..........c.cooueiiiiiiniieiie e 51
Selecting aMenu [tem ... 51
Selecting Parameters..........ceeieiiiiesie e 51
Changing Parameters...........cooceveeeeiiee e 51
EXITING. ettt 51
ClOCK ...ttt 5-2
Date FOrmat.........cccvviieiiii e 5-2
DELE. ..ottt s 5-2
TIMIB e e 5-2
Keyboard/DiSPlayccoieiiieieiieeeiee e 5-2
AULO-REPEAL.........eeiiiiiiee et 5-2
REPEAL DE@Y.......ooiiiiiiiiiee e 5-2
REPEAL RALE.coeiieie e 5-2
LiNEENd ACHION ...cveiiiiiiiitieriee e 5-3
Screen ENd ACHONoeevieiiieeiee e 5-3
L0 T o O PRV TR PP R PPRRTR 5-3
COMMUNICALTIONS. ...ttt sttt ettt ettt sr e sreesreenreens 5-4
BaUd RELE.........coiiiiieiiiieiee e 5-4
PAITTY ...t 5-4
Data BitS......ccieeiiieiieeiiieriee e 5-4

iv Series 30/40 BASIC Guide

Transmit Handshake ... 5-4
RTS CONLIOL.....eoiieitiesieesieesee e 5-4
Receive HandshaKe............ooveieereinieiienee e 5-5
Convert Parity Error.... ... ieiiiii e 5-5
Parity Error Charoccooiiieiiieee e 5-5
U oot 5-6
ComMMUNICALIONS TESE.....cveiieiriieiee et 5-6
UPIOAA ...t 5-7
Chapter 6 Service
Changing the FUSE.........coi e 6-1
Memory Write DiSable........coouiiiiiiii e 6-2
Troubl€@SN0OLING. .. ccoveiiieeeiie e 6-3
Chapter 7 Concepts
Command/RUN MOOESceeiierieiieie e e 7-1
CONSOIE....eeceee et 7-1
POMTS .. 7-1
SEBLEMENTS ... 7-2
NUmbers and COoNSLANTSccevviiiieiee e 7-2
VaTADIES ... 7-3
Scalar Variables.........coceiviiiiiieiee e 7-3
Array Variables........oociiii 7-3
Memory AHTOCELTONccoueiiiiiie e 7-3
Variabl@ NaMES.......cooieiieiiee e 7-4
Floating point Variables. ..., 7-4
Integer Variables........c.ooiiiiiiiiiee e 7-4
SiNG VariableSooiiiiiiiee e 7-4
BUIlt-IN Variables. ..o 7-4
Operators and EXPreSSiONS........cooveeiieeiieeeriieesiee e sieeesiee e saee e e 7-4
OPEIBLOIS ..ottt ettt a e anee s 7-4
EXPIrESSIONS. ..ccotiiiiiie ittt ettt 7-5
Relational EXPressionsS.......c.ocevoeienieeniee e 7-5
MEMOIY USAQE.......eeeieiiiiie ettt 7-5
Chapter 8 How to Use BP Software
SEAtING UP BP ... 8-1
Starting up the WOrkstationcooeeeiieeieniiie e 8-2
Summary of BP FUNCLIONS.........ccooiiiiieieeiee e 8-3
Creating @ Program........ooouee et 8-4
LiNE@ EAItiNG ...ccivvieiieeiie et 8-4
Command Editing.........coeieiiiiiiii e 8-4
Sending a Program to the Workstation...........ccocceeveeeiieeiieninee e, 8-5
Receiving a Program from the Workstation............cccocoeeiiiiiienenns 8-5
ConfigUING BP....coeeiiiei e 8-6
Color CoNfigUIaLioNccoveeiiiieiee e 8-6
Serial Port Configuration...........ccoceeeieeenieenieeesee e 8-7
Display Configurationccceeeerieiiiinenie e 8-7
Save and Restore Defaults..........occvveeiiiiinece e 8-7
Additional BP FUNCLIONS..........coouiiiiiiiiieie e 8-7
DOS GaLEWEY.......eeeueerertesieeiesie st siee et st see b e seenee e 8-7
Data Capture........ocuueiiiiiee et 8-7
HISOrY WINAOWooiiiiiiiieii e 8-7

Contents

Keyboard Macros..........cooceianiiiiieeee e 8-8
Troubl€SNOOLING....ccveeiieieiee et 89
Chapter 9 Application Suggestions
Special Keyboard FUNCLIONS..........cooiiiiiiieieceec e 9-1
Halting a Program; [Ctrl]-C.......ccoooiiiiiii e 9-1
On-Line Configuration; [F3].....ccccoceeiieenienier e 9-1
Restore COM1 Defaults; [FA]oovveiveiiieieiieeeree e 9-2
Program Development TEChNIQUEScooieiiiiiiiiiiie e 9-2
Storing Programs in Permanent Memoryccccoveeeveencienenieeenennn. 9-3
AULO-Starting Programs.........cooeeeeee e 9-3
Program ProteCtion..........ccooieiiiieeiiee e 9-3
Preserving Data During @ POWES LOSS........ccceeivieiieinieeiniee e 9-4
Printing to the DiSPlay.......cccouieiiieiiee e 9-4
Time-Driven FUNCLIONS.........ccoiiiieiiierieesiee et 9-4
Chapter 10 Commands and Statements

A B S e 10-1
A S e 10-2
ATN e 10-3
BT e 10-4
CALL e 10-5
CBY e a e 10-6
CHRS (right SIdE) ...c.eeieeieieiiesieeeeee e 10-7
CHRS (I SIE)......vveoeeveeeeeeee e eee e 10-8
CLEAR Lt 10-9
CLOCK .ttt ettt et et e e b e e s saneeaeeaes 10-10
L0 I T U ST PP U PROUPR 10-11
CONT ettt e bbb e s br e e e s sabeeeeeaes 10-12
COPY ettt re e 10-13
L0 S T O PO TP OO PROUPR 10-14
L1 O PO P P PROUPR 10-15
CSORLIN ettt ettt be e e s snreeeeenes 10-16
DA T A e 10-17
DATES. ...ttt et 10-18
DB e 10-19
DEL e 10-20
DM e 10-22
DIR e 10-24
DO .o L UNTIL oo 10-25
DO .. . WHILE ... 10-27
DUMP e 10-28
END ... e 10-29
ERR AN ERLcoiiiiiiiiie e 10-30
EX P, e 10-31
FOR . . . NEXT e 10-32
FREE ..o 10-33
GOSUB . . . RETURNciiiiiiie ittt 10-34
L@ 1 1@ O SO P U PROPPR 10-35
HEXS oottt e et ettt 10-36
HV AL et 10-37
LBY e 10-38
IF. .. THEN ... ELSE. ... 10-39
N e 10-40

Vi

Series 30/40 BASIC Guide

INPUT et 10-42
INPUTS .ot 10-47
INSTR e 10-48
N T e e 10-49
IV e 10-50
L@ ettt 10-51
LER T s 10-55
LEN e 10-56
LT e 10-57
[1] O PP UPPRTOPPRRN 10-58
LOCATE .ttt a e 10-60
LOG .t 10-61
MIDS (Fight SI0E)....c.eeueieeieeeceee e e 10-62
MIDS (16 SIUE) ... 10-63
MTOP...ccee e a e 10-64
NEW e 10-65
N O e e e 10-66
ON ERROR GOTO....ciiiiiiieiiiiee ettt 10-67
ON ... GOSUB.... .ottt 10-69
ON L. L GOTO it 10-70
ONTIME = ... GOSUB ...ttt 10-71
OPEN COM ..ottt 10-72
PHO. and PHL. ... 10-80
Pl e 10-81
PLEN . ..t 10-82
POP .. 10-83
POS . e 10-84
PR e 10-85
PRINT et e e e e s snreeaeane 10-86
PRINT USING.... .ottt 10-88
PUSH . e 10-90
RAM . 10-90
REA CT ettt a e 10-92
READ ...ttt 10-93
REM ...t 10-94
RENUM ...ttt a e 10-95
RESTORE ...ttt 10-96
RESUMEot 10-97
RET ettt e rae e e 10-98
RETURN ...ttt 10-99
RIGHTS. ..o 10-100
RND .. 10-101
ROM ... 10-102
RUN e e e snne e 10-103
SDIM e 10-104
SN e a e 10-105
SN e 10-106
O e 10-107
SR e a s ane e 10-107
] I (oSSR 10-108
STOP . e 10-109
STRE .ot ae s 10-110
T A B e 10-111
TAN e 10-112
TIME .. 10-113
TIMES . ..ottt et 10-114
TROFF ...t 10-115

Contents

Vii

WAD .ot 10-116
WAL ot bbb 10-117
VARPTR .o 10-118
VERSION ..ottt 10-119
XBY et bbb b e ne e 10-120
Chapter 11 Operators
PrECEOENCE. ... 11-1
AAITION (1) oo e 11-2
Subtraction Or NEQALION (=) ...coveeiieeeee e 11-3
MUIEIPHCAETON (*) et 11-4
DIVISION (/) cttteriieiesie sttt sb e nn 11-5
EXPONENLIALION (M) eveeiieeeiee ettt 11-6
EQUEL (F) oottt 11-7
NOE BQUAL (S>) 1.t 11-8
LESSTNaN () cooeeeeeie e 11-9
Greater than (3)...ccicveeeieieiie e 11-10
Lessthan or equal t0 (=) ..eeeveiiiiieieeeeeee e 11-11
Greater than or equal t0 (=) ...eeeiveiiiei e 11-12
Chapter 12 Logic
Truth TaDIES. ... e 12-1
AND bbb r e b e 12-2
OR e bbb b e nre e 12-3
XOR ettt bbb bbb bt e et b saeenenne 12-4
INV bbb bbb s n e 12-5
INV AND ot 12-6
INV OR . 12-7
INV XOR ..ttt bbb 12-8
Chapter 13 CALLs
CALL 12; clear tothe end of thedisplay........ccccoveneiiiiiieniienene 13-2
CALL 13; clear totheend of theline...........cccoooieiiiiiiii 13-2
CALL 30; turn on COMT' SRTSIINE....cueeeiiiiiiiiiiieeeee e 13-3
CALL 33; turn off COML' SRTSIINE ..cooovvrieiiiiiceeiee e 13-3
CALL 38; enter the on-line configuration menuccccceeecveenee 13-4
CALL 39; enter the MONiItorcooceeeiieerieeiee e 13-4
CALL 40 and 41; return charactersin COM1 buffer..............c.c...... 135
CALL 82; print variable list.........cooiieiiiieeee e 13-6
Appendices
A SPEEd-UP HINES ... A-1
B. Differences between Series 30/40 BASIC and GW-BASIC.......... B-1
C. MEMOrY MaD ...t C1
D. REEIENCE... ..o D-1
Command SUMMENYccooeeareieiieeriee e seee s D-1
OPEIBLOIS.....coeeeieetiee ettt aneas D-6
CALLS. ottt D-7
Workstation Key COAES........ccuveiuieiieniiiieiee e D-7
CTRL Characters Sent to Workstationcccceeeevveenienns D-8
POIS ... D-8

Symbols

Chapter 1

Getting Started

This guide describes the details of the BASIC language in the Series 30/40
Workstations. To get the most from this guide, you should already be familiar
with the BASIC language.

Certain symbolsin this guide help make you aware of critical information, as
shown below:

This symbol emphasizes that hazardous voltages, currents,
temperatures, or other conditions which cause personal
injury exist in this equipment or may be associated with its
use.

This symbol appears when equipment damage may occur
if careisnot taken.

Note A note gives information that pertainsto a specific
firmware release or one form of the hardware only.

1-2

Series 30/40 BASIC Guide

The following table shows the meaning of various symbols used throughout this
guide. Words enclosed in square brackets usually represent keys on the keyboard
as shown in the first example below:

Symbal Refersto

[Enter] Key labeled “Enter” (or “Return”) on the keyboard.

UPPER CASE Words that you type exactly as shown.

[Filename] Name of a screen file entered by the user.

lower case An entry that varies based on your needs.

nnn Number that you enter .

var Variable name of any type, such as“A” o “ A$”

nvar Numeric variablesuch as“ A" o “ A%.”

svar String variable, such as A$.

const Constant number, such as“123.45" or “5.”

expr Any expression that returns avalue, including smple
variables such as“ A” aswdl as such expressions as
“ A/B” a. “ A$ + B$.H

aexpr Any number, variable, or combination that returns a
numeric value in the range of a floating point number.

iexpr Any number, variable, or combination that returns a
numeric value in the range of an integer number.

rexpr Any number, variable, or combination that returnsa0 or
non-zero value, typically includes arelational operator
SJCh % “ <H Or “ >:.H

sexpr Any string or combination that returns a string.

{} Bracesindicate an optional entry.

Screens on your computer are enclosed in boxes as shown in the example below:

>

NEMATRON CORPORATI ON
Series 30/ 40 BASIC
Ver si on 5.50

READY — RAM 1

Workstation screens are enclosed in double boxes, as shown in the example

bel ow:

VWl cone to V5.50 B
Series 30/ 40 BASIC

This guide indicates something you are supposed to type by italicizing it: Type

This.

Getting Started 1-3

Hardware and Software Requirements

Y ou need the following equipment to write programs for a Series 30/40
Workstation with BASIC:

Series 30/40 Workstation

PC-compatible with:

Minimum 640K of memory

Floppy disk drive

Hard disk drive with 1.5 megabytes of available space
Serial communications port (COM1)

Monochrome or color monitor

PC system software (DOS 2.0 or later)

IWS-SETUP-BP-30

One 3 1/4" setup diskette. Contact the factory if you require the setup
program on a5 1/4" diskette.

Cable to connect your PC's 9-pin serial port to your Series 30/40
Workstation’s COM1 port. If your PC has a 25-pin seria port, a
standard 9 to 25 pin adapter will allow you to use the downl oad
cable,

Display

Chapter 2

Display and Keyboard

This chapter describes how to control the Workstation’s display and how the
keyboard operates.

Character Set

Contrast
Adjustment
(IWS-30 only)

Keyboard

The Series 30 Workstation displays two lines with 20 characters on each line of
aliquid crystal display (LCD) with LED backlighting. Because of the 100,000
hour half-life of the backlight, the Workstation has no “ screen saver” function.

The Series 40 Workstation comes with a vacuum fluorescent display (VFD) with
two lines of 20 characters each.

The character set on both model s includes the entire standard ASCI| character
set, but islimited only to U.S. characters and eight programmable characters.

To adjust the contrast of the display on the IWS-30, rotate the knob on the back
of the Workstation.

Keyboard Faults

Keyboard Inserts

The keyboard on the Series 30/40 Workstation is a sealed-membrane type with
stainless steel domes that provide tactile feedback.

If the Workstation appearsto ignore all key presses, the keyboard may be
faulty. If the Workstation senses any invalid combination of keys pressed
simultaneoudly, it accepts no further key presses until all keys are released.
This provides some protection against a stuck key.

Y ou can change the key and logo legends by replacing inserts that didein
behind the keyboard. To replace the inserts, you must first remove the back
cover.

For a modest tooling charge and additional cost per unit, Nematron can provide
custom inserts to meet your needs. As an aternative, you can make your own
inserts according to the following instructions.

2-2 Series 30/40 BASIC Guide

Logo Insert You can install your own logo in place of Nematron’slogo. The drawing on
the to shows the insert, which you must cut as shown; the cross mark would
appear at the center of the window. The drawing on the bottom shows the
window, which indicates the maximum size you can print your logo.

0.560" «€— 3.450" (87.63 mm) ———>»

(14.22 mm) |(_ 1.240" (31.50 mm) —>»

$ $ 0.06" (1.52 mm) radius; 4 places—/

0.280"
(7.11 mm)

0.500" «— 2.420" (61.47 mm) —>»

(12.7 mm) | 1.210"
<) (30.73 mm)

v |

A A 0.031" radius; 4 places _/

0.250" (0.78 mm)

(6.35 mm)

Display and Keyboard 2-3

Top Row Insert The drawing on the top shows how to cut an insert for the top row of keys. The

cross marks indicate the center of each key'slegend. The drawing on the

bottom shows the window for each key, which indicates the maximum size you
can print your legends.

<
Y

5.200" (132.08 mm) >

>

<— 2.528" (64.21 mm) — >

0.06" radius; 4 places 0.340" (8.64 mm) —» <—
0.635" (1.52 mm)
(16.13 mm) / 0.875"(22.23 mm) —<€—>»

typical; non-agcumulating
v | | | |

.
L | | | |

¢ 670" 3
(7.02 mm)

.335"

> @51mm) |€&

.625"
(15.88 mm)

031" (.78 mm) radius; 4 places\ (7.521%1m) l
\/

2-4 Series 30/40 BASIC Guide

Bottom Row Insert The drawing on the top shows how to cut an insert for the bottom row of keys.
The cross marks indicate the center of each key’slegend. The drawing on the

bottom shows the window for each key, which indicates the maximum size you
can print your legends.

< 5.200" (132.08 mm)

Y

«— 2528" (64.21 mm) —>»
0.340" (8.64 mm) — | |<€&—

0635 0.06" radius; 4 places
.635" (1.52 mm)
(16.13 mm) < > 0.875" (22.28 mm)

V typical; non-pccumulating

v | |
0.318" [[
(8.07mm) |)
¢ 670"
(7.02 mm)
335"
_) (3.51 mm) <—

!

625"
(15.88 mm)

.031" (.78 mm) radius; 4 places \ (7.521 ?nm) l
\4

Chapter 3

Hardware Installation

For information on installing and connecting the Series 30/40 units, refer to the
Series 30/40 Ingtallation Guide (DOC-IWS-271; Rev. C), which isincluded with
the 30/40 Workstation.

Chapter 4

Software Installation

This chapter describes how to install the software included with IWS-SETUP-30/40 on your
hard disk drive and how to download firmware to your Workstation.

Power-Up Sequence

After you apply power, the Workstation checks for valid firmware memory. If the firmwareis
valid, the unit displays its model number and performs a brief self-test that includes memory,
keyboard and display.

To speed up the display of the self-test, press[x]. At the end of the self-test, the unit begins
normal operation, which varies depending on the firmware.

If firmware memory is empty or invalid, the Workstation performs an exhaustive test of the
memory. During thistest, which lasts about one minute, the Workstation displays the
following:

Now t esting Fl ash.
Pl ease wait

At the conclusion of the test, the Workstation displays the foll owing message (if the firmware
appears faulty, the message starts with “Invalid” instead of “Empty”):

Enpty firmare;
you must downl oad.

Downloading Firmware

This section describes how to change the firmware in your Series 30/40 Industrial
Workstation. You may have to change your firmware either to change its type or to upgrade
the current version.

Three types of firmware are available

e PLC Workstation (IWS-SETUP-30)
® Industrial Computer with BASIC (IWS-SETUP-BP-30)

® Industrial Terminal (all Series 30/40 models |eave the factory with this firmware
installed), which isincluded with the IWS-SETUP-30 kit.

Because the unit storesits firmwarein “flash” memory, each hardware model supports all three
types of firmware. To change firmware, you ssimply plug in a PC-compatible and transmit a
firmwarefile.

4-2 Series 30/40 BASIC Guide

When a new Workstation leaves the Nematron factory, it has the Industrial Terminal firmware
already downloaded. If you want to program your unit in BASIC, then you must download
new firmware.

Required Equipment

In order to download firmware, you must have the following equipment and materials
available:

® One31/2" disketteincluded in the IWS-SETUP-30/40 package.

® PC-compatiblewith at least 256K RAM, one serial port, one hard disk drive, and one
floppy disk drive.

® Cableto connect your PC to the Workstation; thisis part number CBL-C2, and is
included in the IWS-SETUP-30 package.

® Series 30/40 Industrial Workstation.
Downloading The following instructions describe how to download new firmware to your
Series 30/40 Industrial Workstation. Before you begin, you should ensure

that you have the necessary equipment available.

1. If your new Workstation displays the following screen after completing its power-up
self-test, then proceed to step 2:

First-tinme power-up!
Downl oad or hit key.

If your Workstation does not display this screen, then you must hold down the [-] and
[1 keys simultaneously while powering up the Workstation.

Note Unlike other hidden keyboard commands that the system
can accept at any time during the power-up self-test, the
system looks for the keyboard command to enter the
download mode only at the moment of power-up. In other
words, you must hold down [-] and [] even before you

apply power.

Thisimmediately brings up the following message:

Ready to accept
firmvare downl oad.

2. If you have aready loaded the IWS-SETUP-BP-30 software onto your hard drive, then
skip to step 4. Otherwise, create a directory on your hard drive for the software and
change the current path to that directory.

For example, if you want the directory to be “IWS’ then you would type MD IWS and
press [Enter] to create the directory. Then you would type CD IWS and press [Enter] to
change the current path to that directory.

Software Installation 4-3

3. Insert the diskette labeled IWS-SETUP-BP-30 into your PC’s floppy disk drive and type
Copy a:*.* d:\IWS(d = disk drive where you created the subdirectoryAIWS) and press
[Enter]. This copiesthefilesto your hard drive.

4. Connect the download cable between the 9-pin COM1 or COM2 port on your PC and
the COM1 port on your Workstation.

5. Type DOWNLOAD followed by the firmware file you want to download to your PC.
Listed below are your filename choices:

Filename Firmwar e Description

HO.ROM Allen-Bradley PLC-5 and PLC-2 (RS-232); GE Micro
Allen-Bradley Micrologix 1000 and SLC-5/03 and 5/04 (RS-232)

H1.ROM Allen-Bradley PLC-2 (programming port)

H2.ROM Allen-Bradley 100/150 and Modbus

H3.ROM Allen-Bradley SL.C 500-RS-485 (available separately)

H4.ROM GE Fanuc Series Ninety; Omron SP Series

H5.ROM GE Fanuc Series 1, 3, 5, 6; Texas Instruments 305 and 435; Koyo
DL 330, DL340, DL430, and DL440; Square D 100 to 700

H6.ROM Omron; Simatic/TI 500/505 Series

H7.ROM Siemens 90U to 115U; Westinghouse 700-1250

H8.ROM Mitsubishi A, F, and FX Series

H9.ROM Hitachi H Series; IDEC Micro 3

HA.ROM IDEC Micro-1, FA-1, FA-2, and FA-3;
Toshiba M, EX, and T2

HB.ROM BASIC

HC.ROM Telemecanique

HTM.ROM Termina

For example, to set up your unit for BASIC, type DOWNLOAD HB.

To download using COM2 on your PC, type -2 before the filename; for example,
DOWNLOAD -2 HB.

As of this guide's publication, the most recent release of DOWNLOAD was version 1.81. The
version number is automatically displayed when you run the program.

4-4 Series 30/40 BASIC Guide

Version Numbers

As of this guide’ s publication, the most recent release of BP was version 3.36, and the most
recent release of firmware was version 5.50. If you call Nematron for assistance, you should be
able to provide the version numbers you are using. As of this guide's publication, the most
recent release of DOWNLOAD was version 1.81. The version number is automatically
displayed when you run the program.

To find the version of BP software you have, just ook at the top line of the screen:

To find the version of firmware you have, cycle power and watch the display during the power-
up self-test:

BASI C V5.50 B
Model | W5-30/40

Chapter 5

On-Line Configuration

This chapter describes how to access and use the built-in configuration program.
The configuration program allows you to set up the operation of your Workstation. For
example, you can set up the communications parameters for your serial port.

Accessing the On-Line Configuration Menu

To access the Configuration Menu, hold down [F1] and [¢,] sSimultaneously
during the power-up self-test or press[F3] at any timewhen BASIC isin
the command mode (i.e., no program is running).

Main Configuration Menu

When you enter the on-line configuration program, the Workstation displays the following
screen:

F1-d ock F2-Kbd/ Dsp
F3-Comm F4-UWility

Selecting a Menu Item To sdlect an item from a menu, simply press the corresponding function
key.

Selecting Parameters To scroll from selection to selection without changing anything, press|- |
or []. If you make a change and then press[-] or [], the unit does not
record the change and instead goes to the previous or next selection.

Changing Parameters To change a parameter, you must press [+] or [—] to choose the desired
parameter, and then press [¢]; the system then displays the next selection.

Exiting Pressing [X] at any time returns to the previous menu (and the Workstation
ignores any change on the current screen). To exit the configuration
program entirely, press[x].

5-2 Series 30/40 BASIC Guide

Clock

Date Format U.S (MM/DD/YY), Int'l (DD.MM.YY)
Selects the format the Workstation uses to print the date. The U.S. format
is MM/DD/YY, where the month comes first; for example, June 24, 1994 is
06/24/94. The Int’| format is DD.MM.YY, where the day comes firt; for
example, June 24, 1994 is 24.06.94

Date Sdectsthe current date; note that the Workstation rejects months and days
that areinvalid. Because the Workstation has no battery, it loses the date
every time you turn off power.

Time Selectsthe current time; note that the Workstation uses a 24-hour clock, so
in the afternoon, you must enter the current time plus twelve. Because the
Workstation has no battery, it loses the time every time you turn off power.
And while you have power applied, the Workstation’s clock is accurate
only to within a few minutes every day.

Keyboard/Display

Auto-Repeat Enabled, Disabled

Selects whether holding down a key causes it to repeat continually (after a
brief delay). We recommend you leave this Disabled.

Leave the auto-repeat option Disabled if you have assigned
any keysto a machine control function. Please consider
whether a stuck key could indirectly harm personnel or
equipment.

Repeat Delay 1to 255

Thisisthe amount of time your operator must hold down a key before it
repeats. Note that the resolution of this parameter is 50 milliseconds, which
means that a value of 20 equals one second. If you must enable the auto-
repeat option, we recommend a repeat delay of 20.

Repeat Rate 1to 255

Thisisthe amount of time the unit waits between repeats while akey isheld
down. Theresolution of this parameter is 50 milliseconds, so a value of 2
means the unit repeats every 100 milliseconds, or 10 times each second. If you
must enable the auto-repeat option, we recommend a repesat rate of 1 or 2.

On-Line Configuration

Line End Action

None, Auto-CR, Auto-CRLF

This selection allows you to choose where the cursor moves after it printsto
thelast column on aline. Following is how these selections control the
cursor’s movement:

None The cursor remains at the end of the current line.
Auto-CR The cursor moves to the first column of the current line.

Auto-CRLF If the cursor isnot on the bottom line, it moves to the first column of the
bottom ling; if the cursor is on the bottom line, the cursor movement
depends on your choice for the Screen End Action selection.

When the cursor is sent backwards, the same concepts apply. For example, when going
backwards from the first column, Auto-CR moves the cursor to the last column of the current
line, while Auto-CRLF moves the cursor to the last column of the previousline. Of course,
None leaves the cursor in the first column. We recommend that you set this parameter to
Auto-CRLF.

Screen End Action None, Wrap, Scroll

Cursor

If you choose Auto-CRLF for the Line End Action selection described
previously, this selection allows you to choose where the cursor moves after
it printsto the last column on the bottom line. Listed below is how each
selection affects the cursor’s movement:

None Cursor remains at the end of the bottom line.
Wrap Cursor moves to thefirst column of thetop line.
Scrall The Workstation moves the bottom line to the top and clears the bottom line.

Then it moves the cursor to the first column of the bottom line.

When the cursor is sent backwards, the same concepts apply. For example, when going
backwards from the first column of the top line, Wrap moves the cursor to the last column
of the bottom line, while Scroll moves the top line down and places the cursor at the last
column of the top line (which is now blank). Of course, None leaves the cursor in the first
column. We recommend that you set this parameter to Scroll.

None, Block, Underscore

Selects the cursor type. We recommend that you choose the Block cursor.

5-4 Series 30/40 BASIC Guide

Communications

Baud Rate 110, 30/400, 600, 1200, 2400, 4300, 9600, 19200
Selects the speed at which this port transmits and receives. We
recommend 9600, but in any event you must ensure that the device
connected to this port operates at the same speed.

Parity None, Odd, Even
Selects whether the Workstation sends and receives an extra bit that helps
guard against lost bits. Selecting None disables this feature, while Even
specifiesthat of the bits received, an even number of them must be high
(and conversely for Odd). We recommend you enable parity if the data
communicated iscritical. In any event, this must match the setting of the
device connected to this port.

Data Bits 7,8
Selects the number of data bitsin each byte transmitted. This must match
the setting of the device connected to this port. The combination of 7 data
bits, no parity, and 1 stop bitsisinvalid. In that instance, we recommend
you select 2 stop bits instead.

Stop Bits 1,2
Selects the number of stop bits transmitted after each byte. This must
match or exceed the setting of the device connected to this port. In other
words, selecting 2 always works, but selecting 1 usually works. The
combination of 7 data bits, no parity, and 1 stop bitsisinvalid. In that
instance, we recommend you select 2 stop bits instead.

Transmit Handshake None, CTS, XON/XOFF

Selects the type of “handshaking” that the Workstation respects when
transmitting. Selecting None tells the Workstation to transmit
immediately. Thisworksfineif the other device s receiver is always ready
to receive. Selecting CTStells the Workstation to transmit only if its CTS
input is asserted. Choosethisif the other device has an output that it
assertswhen itsreceiver isavailable. Thisis often called “hardware
handshaking.”

Selecting XON/XOFF tells the Workstation to stop transmitting when it
receives an XOFF (ASCII code 19, or [Ctrl]-S) and to resume when it
receives an XON (ASCII code 17, or [Ctrl]-Q). Thisis often called
“software handshaking” and is typically used only for Terminals.

RTS Control Always On, On During Xmit, On to Receive, On at Xmit

Selects the function of the RTS handshaking line. 1n most RS-232 applications, you
should select Always On and connect RTS to the CTS input of the Workstation or the other
device.

For virtually all RS-422 and RS-485 applications, you should select On During Xmit. The
Workstation enables its RS-422/RS-485 transmitter only when RTSison, which is crucial
when there are multiple transmitters on the same pair of wires.

Choosing On to Receive isthe same as choosing RTSfor the Receive Handshake selection
that follows.

On-Line Configuration

5-5

Receive Handshake

Convert Parity Error

Parity Error Char

None, RTS, XON/XOFF

Selects the type of “handshaking” that the Workstation asserts when

receiving. Thisisespecially useful to prevent your host from overflowing

the Workstation’s receive buffer, which can cause weird display problems.

If the other device supports *hardware handshaking” on its transmitter, which usually
means that it doesn’'t transmit unlessits CTS input is asserted, you can select RTSand
connect the Workstation’s RTS output to the other device’ sCTS input. (Thisisthe
same as choosing On to Receive for the RTS Control selection previously described.)

If the other device supports “ software handshaking,” you can select XON/XOFF so that
the Workstation matches the other device.

Enabled, Disabled

This selects whether the Workstation automatically trand ates characters

received with the wrong parity into some other character.

Typically, you would assign a character such as“~” that is normally not displayed, so
that the operator knows that there was a parity error.

Oto 255
Selects the ASCII code of the character returned in place of characters

received with incorrect parity. You should read the description above
under “Convert Parity Error” for more information.

5-6

Series 30/40 BASIC Guide

Utility

Selecting the Utility function from the main configuration menu brings up the following menu:

Uility Menu
F1- Test F2- Upl oad

Test Thissection describes how to perform a*loopback” test on the Workstation's
COM1 port so that you can check for a hardware failure. Thistest is useful
either to confirm or rule out that communication problems are related to
hardware problems.

Before you begin this test, you must plug a “loopback” connector into the COM1 port. This
connector is afemale DB25 connector that you have modified according to one of the following

diagrams:
RS-232)
Series 30/40 COM1
25-pin Female; RS-232loopback

TXD 2
RXD 3 :I
RTS 4
CTS 5 :I

RS-422

Series 30/40 COM1
25-pin Female; RS-422loopback

TXD + 14
RXD + 16
TXD - 15
RXD - 17
RTS 4
CTS 5

To perform thistest, you must first gain access to the on-line configuration menu by cycling
power and pressing [F1] and [¢,] simultaneoudly during the power-up salf-test. To run thetest,
you first press [F4] and then [F1].

After you start the test, the Workstation sendstest data out through the transmitter and checks
for identical data coming back through itsreceiver. If everything works properly, the
Workstation displays the following screen:

Test Port:
COML: Pass

On-Line Configuration

5-7

If the COM1 port does not work properly, the Workstation displays one of the following

messages:

Break

Compare

Framing

No CTS

Overflow

Overrun

Parity

Timeout

Indicates that a“break” character was received; probably indicates a failed
transmitter.

Indicates that the Workstation received different characters than expected; the
probable cause is a hardware failure.

Indicates that the Workstation received a character with aframing error; the
probable cause is a hardware failure.

Indicates that the CTS input appears not to be asserted; thisis caused either
because the jumper between RTS and CTS is missing from the loopback
connector or because the RTS output or CTS input has failed.

Indicates that the Workstation received too many characters; the probable
causeisa hardwarefailure,

Indicates that the Workstation was unable to process characters as fast as they
arrived; the probable cause is a hardware failure.

Indicates that the Workstation received a character with a parity error; the
probable cause is a hardware failure.

Indicates that the Workstation received no characters at all; thisis caused
either because the jumper between RXD and TXD is missing from the
loopback connector or because the transmitter or receiver has failed.

Upload Thisalowsyou to enable uploading of new firmware to the Workstation.
After selecting this option, you can follow the instructions on page 5-2 to
download firmware.

Ready to accept
firmvare downl oad.

Chapter 6

Service

This chapter describes service procedures and hel ps you troubleshoot some of the simple
hardware problems that can occur. The material in this chapter is aso contained in DOC-
IWS-271, Series 30/40 Installation Guide.

Changing the Fuse

The Series 30/40 Workstation requires one 1/2 Amp Slo-Blo Pico™ fuse (Littelfuse® part
number 473.500); Nematron offers fuses under part number COS-FUS-30 which contains ten
fuses.

The fuse holder is accessible only by removing the back cover and printed circuit board.
Follow these steps to replace the fuse:

1. Disconnect power to the unit. Disconnect any communications cable plugged into
COM1. Remove the unit from the panel.

2. Correct the condition (usually a power supply overload) that caused the fuse to blow.

3. Removethe four screwsthat hold on the back cover and dip off the back cover.

4. Locate the ribbon of plastic that connects the keyboard to the printed circuit board,
unlatch the black cap of the keyboard connector, and remove the keyboard tail.
The following two illustrations show the keyboard connector in the latched and
unlatched positions:

Series 30/40 BASIC Guide

9.

Remove the four standoffs that hold on the printed circuit board and remove it as well.

Locate fuse F1 near the power supply terminal block. Using a continuity tester, check
the fuse to make sure it’ s the problem.

Using needle-nose pliers, grab the center of the fuse and pull straight up. Install a
new fuse,

Install the printed circuit board back on the posts; be sure that the two spacers between
the display and the printed circuit board remain in place.

Insert the keyboard tail into the keyboard connector, and latch the connector.

10. Install the standoffs, replace the back cover, and replace the screws.

Memory Write Disable

After you download your firmware and application file, you can disable any further changesto
the firmware by moving a jumper inside your unit.

To move this jumper, follow these instructions:

1

Disconnect power to the unit. Disconnect any communications cable plugged into
COM1. Remove the unit from the pandl.

. Remove the four screws that hold on the back cover and dip off the back cover.

The jumper islocated on the component side of the printed circuit board near the LCD
display module. Thejumper islabeled “E2” and has two positions: “RO” and “RW”.
The“RO” position is “Read-Only”; moving the jJumper to that position protects the
memory from any intentional or accidental changes. The “RW” position is
“Read/Write”; moving the jumper to that position allows you to download new
firmware or a new application.

Replace the back cover and the screws.

Service

6-3

Troubleshooting

Virtually all apparent problems are caused by improper communications connections or
inadequate grounding.

Problem noted

Possible cause(s)

Remedy

No response to some keypresses

Firmware download reports that
Flash is write-protected, empty
or invalid

Communications problems

Unit resets randomly or exhibits
other intermittent problems

Loose keyboard connector; faulty
keyboard

Write-protection jumper isin “RO”
position; using old version of
DOWNLOAD; faulty firmware

Bad cable; port failure

Loose or shorted power cable; short
in communications cable

Workstation not connected to earth

Voltage potential between earth
grounds of Workstation and other
devices connected to its
communications ports

Loose integrated circuit inside

Faulty Workstation power supply
Low line power voltage

Faulty Workstation

Unlatch keyboard connector, ensure keyboard
tail isfully seated, and re-latch connector;
return unit to factory for new keyboard.

Move write-protection jumper to “RW”
position; use V1.6 or later of DOWNLOAD;
or return unit to factory for new firmware.

Verify cable; use proper wire for RS-422;
check serial port with our loopback test as
described in Chapter 5.

Check, repair and replace cable(s).

Connect unit to earth ground.
Connect al devices to the same earth ground.

Open unit, remove board and press chip into
socket.

Return unit to factory.
Raise voltage.

Return unit to factory.

Chapter 7

Concepts

Command/Run Modes

Console

BASIC operates in two modes, the Command, or direct mode, and the Run, or deferred mode.
Some statements can only execute when BASIC isin the Command mode; others can execute
only in the Run mode, while the remainder can execute in both modes.

In Command mode, BASIC immediately executes one or more statements after you press [Enter].
Examples of statements that execute only in Command mode are NEW and DEL.

In Run mode, BASIC executes numbered program statements. Examples of statements that can
execute only in RUN mode are STOP and RESUME.

Ports

Y our IBM-compatible PC acts as a programming “console” when connected to the Workstation’s
serial port. Through the console, you can enter commands and edit your program.

The default Workstation serial port that connects to your console is COM1,; you can assign a
different serial port as the console port with the REACT C command. For example, REACT C2
assigns port 2 asthe console. See the description of the REACT command for more information.

Y ou must connect your Workstation's COM1 port to your PC when you' re programming, and to
some other device when your program is running. This can be awkward, so we recommend that
you consider using an IWS-117 or IWS-127 for program devel opment.

When communicating, the display and keyboard are also considered to be a port. The following
table summarizes the port names and numbers:

Name Number Description
COMO 0 Keypad and display
COoM1 1 COM1 serial port

7-2

Series 30/40 BASIC Guide

Statements

A BASIC program consists of numbered lines. Each line ends with a carriage return and
contains one or more statements. Each statement on the same line must be separated by a colon

().
The following rules apply to BASIC statements:

» Everylinein aprogram must have a statement line number ranging between 0 and
65535. A good programming practice is to number line numbers by 10 (i.e. 10, 20, 30,
etc.), because BASIC doesn't care if there are gaps between line numbers.

* A statement number can appear only oncein a program.

* You do not have to enter statementsin numerical order, because BASIC automatically
stores them in ascending order.

* A statement may contain no more than 250 characters.
» BASIC ignores blanks (spaces) except between quotation marks.
» A singleline can contain more than one statement; a colon (:) separates each statement.

10 PRINT ABS(-45) : REMTHI S I S A PROGRAM STATEMENT

\— Remar k (non-execut abl e)
— Statenent separator (colon)
— QOperator

— Command (as part of statenent)
Statement |ine nunber

Numbers and Constants

There are two types of numbers that BASIC can handle: integers and floating point numbers.
Integers range from -65,535 to 65,535, while floating point numbers range from £1E -127 to
+.99999999 E + 127.

Floating point numbers contain eight significant digits, BASIC continually truncates results that
return more than eight significant digits. BASIC can accept and display numbersin three
formats:

Format Example
Decimal 34.98435
Hexadecimal OAGEH
Scientific notation 1.2745 E+3

Hex numbers must begin with a digit between 0 and 9; to enter a hex number that startswith a

letter (A through F), you must precede the number with a0. For example, you must enter the hex

number AOOH as 0AOOH. When a BASIC operation requires an integer, BASIC either rejects
any number that exceeds the range and returns an error or truncates any fractional portion so it
fitsthe integer format.

The word “constant” ssimply refersto a group of digits or a string of characters. For example,
123 isacongtant, while A isavariable. Constants can rangein value from +1E -127 to
+.99999999 E + 127.

Concepts

7-3

Variables

Scalar Variables

Array Variables

Memory
Allocation

Variables are named locations that hold changeable values. Different types of variables exist for
different types of values, for example, small integers, fractions or large numbers, and strings of
characters. Also, avariable can hold one value (“scalar variable”) or many values (“array
variables’).

Each type of value that a variable can hold islisted in the table below:

Variable Type Format Example
Floating point Variable name A

Integer Variable name followed by “ 9%’ A%
String Variable name followed by “$” AS$

Thefirst three variable formats identify different variables, even if the preceding letters are the
same. For example, the variable names A, A%, and A$ all refer to different variables.

Array variables are different from scalar variables of the same name; for example, A(), A,
A%(), A%, A$() and A$ all refer to different variables!

Simple variables that represent a single value are called “scalar” variables. For
example, the variable“ A” isascalar variable that represents a single number.

BASIC supports single-dimensioned variable “arrays,” where one variable
name refers to several separate variables, each identified by a number that
followsthe name. Theformat of an array variableis“A(n)” where*n” isa
number that refersto a specific variablein the array. Chapter 11's description
of the DIM statement contains additional information about array variables.

BASIC allocates RAM memory space to variablesin a“static’ manner. This
means that each time the program refersto a new variable, BASIC allocates 8
bytes of memory to that variable (strings require more; see the description of
VARPTR in Chapter 11).

A BASIC program cannot de-allocate memory allocated to specific variables. For example, if
BASIC executes a statement like A = 4, you cannot tell BASIC later that the variable A no longer
exists. The only way to clear the memory allocated to variablesis to execute a CLEAR
statement, which eliminates all variables.

Note BASIC evaluates references to scalar variables faster than
array variables. Toimprove your execution time, use scalar
variables for intermediate results, then assign the final
result to an array variable.

7-4 Series 30/40 BASIC Guide

Variable Names A variableisanamed data location that a BASIC program can examine and
change. A variable name must start with aletter, but it may include both
numbers and letters. Only the first two characters of the variable name are
significant. For example, “ A” isavalid variable name, asis“ A1234;”
however, BASIC considers“ A1234” to bethesameas“Al”

Variable names cannot include any words that BASIC reserves for its own use.
Among the reserved words are all of the statements listed in Chapter 11. For
example, TOP isnot avalid variable name because it contains the word TO,
which BASIC usesin a FOR statement. As another example, STOPisnot a
valid variable name because it is a BASIC statement.

Floating point Unless otherwise indicated, variables refer to floating point numbers. For
Variables example, A, A1, BAD, and STARTING areall valid floating point variable
names. Floating point numbersrangein value from +1E -127 to +.99999999 E
+ 127, but with aresolution of only 8 digits. For example, when BASIC
multiplies 1.2345678 by 11, it truncates the result of 13.5802458 to 13.580245.

Integer Variables Integer variable names end with a % character; for example, A% is an integer
variable, not a floating point variable. Integer numbersrangein value from -
65,535 to 65,535. (Integersin most BASICs have arange of only -32,768 to
32,767.)

Integers offer a speed advantage; most operations involving integers execute as
much as 10% faster than the same operations using floating point numbers.
Unlike most BASICs, Series 30 BASIC does not offer any savings in memory
consumption by using integer variables instead of floating point.

String Variables String variable names end with a $ character; for example, A$isastring
variable. String variables have a default length of 10 characters; your program
can set up a different default string length for all strings as well as specify a
length of up to 254 characters for any specific string. Consult the description
of SDIM in Chapter 11 for more information.

Unlike most BASICs, Series 30/40 BASIC allocates memory to stringsin a
“gtatic’ manner. Once you create the string, either with the SDIM statement or
simply by referring to it, you cannot change its maximum length.

Built-in Variables Built-in variables contain values that BASIC assignsitself, depending on the
circumstances. For example, ERR contains the number of the last error that
occurred. Notethat all charactersin the variable name are significant for built-
in variables. In other words, ER is not the same variable as ERR.

Operators and Expressions

This section describes how to combine multiple mathematical operationsinto a single expression.

Operators Operators manipulate one or two operands and return aresult. Typical dyadic
(two-operand) operators include add (+), subtract (-), multiply (*), and divide
(/). Typical unary (one-operand) operators are exponentiation (), SIN (sine),
COS (cosine), and ABS (absolute).

Concepts

7-5

Expressions

Relational
Expressions

Memory Usage

An expression is a mathematical formula that includes a combination of
operators, constants, and variables. Expressions can be simple or complex. A
“stand-alon€’ variable such as* A” isan expression in itssimplest form. A
complex expression might be SIN(A)* (SIN(A)+COS(A))* COS(A)/2.

Relational expressions compare two expressions and return a true/fal se result.
The numeric value of trueis 65,535; the numeric value of falseis0. A
relational expression can be any arithmetic expression, although typical
relational expressions use the relational operators shown below:

= Equal

<> Not equal

> Greater than

< Lessthan

>= Greater than or equal to
<= Lessthan or equal to

The relational operators also work with strings; stringl is considered “lessthan” string2 if it is
either shorter than stringl or if the first character that doesn’t match has alower ASCII value.
For example, “TO” islessthan “TAP’ and lessthan “TS.”

Page C-13 of the Appendix contains a drawing that shows how BASIC usesthe Workstation’s
memory. Y ou may want to refer to this drawing as you read the following text.

While you're creating a new program, BASIC stores your program at the bottom of available
RAM; asyour program increases in size, BASIC uses RAM memory at increasing addresses.
While you're editing your program, the entire RAM is available.

During program execution, BASIC stores normal variables starting at the top of available RAM
(as specified by MTOP, whose default value is the highest RAM address available); as you add
variables, BASIC stores those variables at decreasing addresses in memory. BASIC stores array
variables starting at the end of your program and works up.

BASIC can run out of memory during editing if your program expands beyond the available
RAM. If this happens, then your program is certainly too big, because BASIC allocates memory
for variables only while your program is executing. BASIC can also run out of memory while
your program is running, if it detects that normal variable memory has overlapped your program
or array variable memory.

In either case, BASIC issuesa MEMORY FULL error and you must slim down your application.

After you have completed your application, you must save it in the Workstation's permanent
memory by copying it to ROM. When the Workstation powers up, it copies the program to RAM
and runs out of RAM. Please see the description of the ROM command in Chapter 11 for
complete information.

Commands and Statements

10-51

Discussion

Reserving memory

LD@

Retrieves data from external memory and placesitin a

variable.

LD@ iexpr, var { ,var2 ...}

Whereiexpr isthe starting address of external memory that contains data, and var isthe

variable to receive the data. Additional variables that recelve their data from consecutive

memory locations are optional.

In combination with the ST@ command, LD@ provides the ability to save
datain the unit’s memory. ST@ writes variables to memory, while LD@
reads variables from memory.

You can use LD@ to retrieve one or more variables of any type, including
floating point numbers, integers, and strings. Y ou must be careful, of course,
to retrieve variables in the same sequence in which you saved them, or strange
things will happen.

Theiexpr parameter isthe starting address of the data for var. If thereare
more variables following var, then they receive their data from consecutive
memory locations.

In order to save datain memory, you must first find the necessary space. This
space comes from unused Flash EPROM space above your program. To
calculate the first available address, you should use the PLEN command to get
the length of your program and add it to A010h; the result isthefirst available
address. The maximum address you can use is OFFFFh.

Although each location in Flash memory can be written to individually, it
must be entirely erased before a location that has already been written can be
changed. And because BASIC storesitself and your program in the same
Flash, you cannot erase the Flash without downloading firmware and your

program again.

A location that has not been written has the value 255 (OFFh); you can change
that value to any other value, but the only way to change it back to 255 isto
erase the entire Flash.

10-52

Series 30/40 BASIC Guide

Memory usage

Special VAD variable

Examples

Floating point and integer numbers use six bytes of memory. For example, if
your program contains the statement “LD@ OF000h,A,B%”, then variable A is
retrieved from FOOOh to FOO5h, while B% isretrieved from FOO6h to FOOBh.

ST@ stores strings with their actual length plus 1 byteto hold the length. For
example, if your program storesthe string “ ABC” at location FOOOh, the length
byte is at FOOOh and the characters“ ABC” are stored between FO01h and
FO03h. (ST@ uses only enough memory to store the actual string, not its
maximum length.)

Variable Type Memory Usage
Floating point 6 bytes

Integer 6 bytes

String Actual length plus 1

For more information about how BASIC stores variables, consult the
description of the VARPTR statement later in this chapter.

BASIC has a special variable called VAD that always points one byte past the
last address that the latest LD@ or ST@ used. Thisis handy to avoid alot of
“bookkeeping” for programsthat store lots of strings, whose lengths can vary.

The example program on the following page saves two variables, S1 and S2, in
Flash memory. When the program starts, it finds the two variablesin Flash
and loads them. If the operator then chooses to change them, the program
accepts new values and stores them in memory.

Line 130 establishes address OFOQ0h as the starting point for permanent variable memory.

This addressrelies on your program’s length remaining less than 20,000 bytes; you can find
out your program’s length by printing PLEN after you have finished writing your program.
With roughly 4,000 bytes of memory available between OFO00h and OFFFFh, and with 12 bytes
needed to store the two permanent variables, you can store changes to these variables about 300
times before running out of memory.

Line 140 calls a subroutine starting at line 540 that checks whether the six bytes of memory
gtarting at address VAD are erased. If they are, then line 150 initializes the permanent
variables to zero and stores them in permanent memory.

If the six bytes of memory at VAD are not erased, then line 160 loads in the variables that are
already stored there. Line 170 calls the subroutine at line 540 again to seeif the next six bytes
are erased. If they are, then the program continues at line 180 because it has already found the
last instance in memory of the two permanent variables.

However, if the following bytes are not erased, then the program rel oads the variables from the
next higher 12 bytes of memory. This process continues until the program has found the most
recent instance of the two permanent variables.

Commands and Statements 10-53

Lines 180 through 260 allow the operator to choose whether to change the permanent variables
or continue with the program. Lines 280 through 380 allow the operator to change the
variables; before allowing the operator to proceed, however, line 290 tests VAD to seeiif there
is enough space remaining in permanent memory to store another instance of the variables.

Lines 330 through 370 accept new values for the permanent variables, relying on the
subroutine starting at line 440. This subroutine displays the current value and allows the
operator to press[+] toincrease it (line 500), [-] to decrease it (line 510), [¢,] to enter the new
value (line 490) and [X] to cancel the entry and restore the old value (line 520).

Line 380 concludes by storing the two new values in permanent memory.

10-54 Series 30/40 BASIC Guide

100 REM Denonstrati on program of variable
savi ng program

110 REM Saves variables S1 and S2 in Fl ash
nmenory

120 OPEN "COMD: | B, CE, LF, CL, SC, AR, RD1"

130 VAD = OFOOOH

140 @GOSUB 540 : IF N =1 THEN 160

150 S1 =0: S2 =0: ST@VAD,S1,S2 : GOTo 130
160 LD@ VAD , S1, S2

170 @GOSUB 540 : IF N =1 THEN 160

180 CLS

190 PRI NT #0,"[F1] - New vari abl es";

200 PRI NT #0,"[F2] - Continue";

210 A = ASC(I NPUTS$(1, #0))

220 IF A = OF2H THEN 390

230 IF A = OF1H THEN 270

240 CLS : PRINT #0,"Wong answer!"

250 PRI NT #0,"Try again.";

260 FOR X = 1 TO 500 : NEXT : GOTO 180
270 REM Al | ow operator to enter new vari abl es
280 CLS

290 | F VAD < OFFFOH THEN 330/ 40

300 PRI NT #0,"No nore menory!";

310 FOR X = 1 TO 500 : NEXT

320 GOrO 390

330 PRI NT #0,"S1 =", S1,

340 N=3S1: GOSUB 440 : S1 = N

350 CLS

360 PRI NT #0,"S2 =", S2;

370 N=S2: GOSUB 440 : S2 = N

380 ST@VAD , S1, S2

390 REM Run program normal |y

400 CLS

410 PRI NT #0,"S1 =", S1

420 PRI NT #0,"S2 =", S2;

430 END
440 REM Accept new val ue
450 N1 = N

460 LOCATE 2,1
470 PRINT #0,"New val ue =", N1; : CALL 13
480 A = ASC(I NPUT$(1, #0))

490 IF A=13 THEN N = N1 : RETURN

500 IFA=43 THEN NI = N1 + 1

510 IFA=45 ANDNL >0 THEN NL = N1 - 1
520 IF A =127 THEN RETURN

530 GOTO 460

540 REM Test for erased val ue at VAD
550 N=0: T=VAD: FORX =0 TO 5
560 IF XBY(VAD + X) <> 255 THEN N = 1
570 NEXT : VAD = T : RETURN

Commands and Statements 10-55

LEFTS$

Returns the left part of a string.

LEFTS$(sexpr,iexpr)

Where sexpr is any string expression and iexpr isthe length of the string to return.

Discussion Ifiexpr isgreater than the number of charactersin the string, the entire string
will bereturned. If iexpr iszero, anull string (Iength 0) is returned.

Examples |10 A$ = "Bettendorf"

20 B$ LEFT$(A3, 3)
30 PRI NT B$

>RUN

Bet

READY — RAM 1
>

>PRI NT LEFT$("Bettendorf", 4)
Bet t

>

10-56 Series 30/40 BASIC Guide
LEN
Returns the number of characters in a string.
LEN(sexpr)
Where sexpr isany valid string expression.
Discussion LEN countsthe number of charactersin astring, including printable,

Examples

unprintable and blank characters.

10 SDI M A$(20) : REM Dinension string

20 A$ = "Eldridge, |owa"

30 L = LEN(A3)

40 PRINT "Length of string is",L,"characters”
50 PRINT A$

>RUN

Length of string is 14 characters
El dri dge, |owa

READY — RAM 1
>

READY — RAM 1
>C$="hel | o"

>PRINT C$, LEN(C3)
hello 5

>

Commands and Statements 10-57

Discussion

Examples

LET

Assigns the value of an expression to a variable.

{LET} var = expr

Where var isthe name of any type of variable that is to be assigned the value of the following
expr.

Asshown in the syntax, LET is an optional word; the equal sign aloneis
sufficient for assigning an expression to a variable name.

10 LET D = 12
20 PRINT D

>RUN
12

>RUN
Cak Street

10-58

Series 30/40 BASIC Guide

LIST

Lists all or part of a program.

Command mode only

LIST {# port#,Hline#1} {,} {line#2}

Where port# is an optional output port and line# is any valid line number in the program.

Discussion Youcan usetheLIST command tolist all or part of your program on the screen of
your PC or of the Workstation (although the latter is not very useful).

LIST List all program lines
LIST n Listline“n” only
LIST n, List from line“n” to the end of the program
LIST ,n List from the beginning to line “n”
LIST m,n List fromline*m” toline*n”
Examples |>LisT
10 SDIM A$(20) : REM D mension string
20 A% = "Ann Arbor, M chigan"
30 L = LEN(A3)
40 PRI NT "Length of string is",L,"characters"”
50 PRINT A$
READY — RAM 1
>
>L| ST 10
10 SDI M A3$(20) REM Di mensi on string
READY — RAM 1
>
>L| ST , 30
10 SDIM A$(20) : REM D mension string
20 A% = "Ann Arbor, M chigan"
30 L = LEN(A3)
READY — RAM 1
>

Commands and Statements 10-59

>L| ST 20, 40

20 A$ = "Ann Arbor, M chigan"

30 L = LEN(A3)

40 PRI NT "Length of string is",L,"characters"”

READY — RAM 1
>

>L| ST 20,

20 A$ = "Ann Arbor, M chigan"

30 L = LEN(A3)

40 PRI NT "Length of string is",L,"characters"”
50 PRINT A$

READY — RAM 1
>

10-60 Series 30/40 BASIC Guide

LOCATE

Positions the cursor on the display.

LOCATE {row#}, {column#}, {cursor}

Where row# istheline (1 - 2), column#isthe display column (1 - 20), and cursor isthe style
of cursor displayed (0 = none; 1 = flashing box; and 2 = underline).

Discussion TheLOCATE command positions the cursor on the display and optionally
selects the kind of cursor displayed. Any of the parameters may be omitted.

Examples The following example places a block cursor in row 2, column 4.

10 LOCATE 2,4,1 : REM Row 2, colum 4, bl ock cursor
>RUN

READY - RAM 1
>

The following example places the cursor in column 3, and leaves the row the same.

10 LOCATE , 3
>RUN

READY - RAM 1
>

Commands and Statements 10-61

LOG

Returns the natural logarithm.

LOG(expr)

Where expr is any number or numeric expression greater than zero.

Discussion Thenatural logarithm isthe logarithm to the base e (2.718281828). LOG and
EXP areinversefunctions. Thereforethe LOG of EXP(X) isx.

To calculate the logarithm in any other base, use the formula logy(x) = log(x)/log(b).

Examples | >PRI NT LOJ 34. 67)

3. 545875

>

10 A = EXP(14)
20 X = LOG A
30 PRINT X
>RUN

14

READY — RAM 1
>

10 I NPUT "Enter nunber", A

20 X = LOX A : REM Cal cul ate natural |log of A
30 Z = XLOF10) : Convert to base 10 | og

40 PRINT A X, Z

>RUN
Ent er nunber 34. 67
34.67 3.545875 1.5399547

READY — RAM 1
>

10-62

Series 30/40 BASIC Guide

Discussion

Examples

MIDS$ (right side)

Returns a string from within another string.

MID$(sexprl, iexprl, iexpr2)

Where sexprl isthe string variable; iexprl isthe new string’s starting point within the current
string; and iexpr 2 isthe length of the new string.

On theright side of an equals sign, MID$ returns a string from within another.
The string returned starts at the nth character of sexpr, wheren = iexprl, and
continues for iexpr2 characters. If iexprl exceeds the length of sexpr, the
resulting string is null (length = 0).

10 A$ = "Bettendorf"
20 B$ = M D$(A3, 4, 4)
30 PRI NT B$

>RUN

tend

READY — RAM 1
>

Commands and Statements 10-63

MID$ (left side)

Places a string within another string.

MID$(svar, iexprl {,iexpr2})

Where svar isastring variable, iexpr1 is an offset into the string and iexpr2 is an optional
length.

Discussion Ontheleft side of an equals sign, MID$ copies the string expression on the
right of the equals sign into the string starting at a specified offset, iexpr1, and
continuing for an optionally specified number of characters, iexpr2. If iexprl
or iexpr2 equals zero, then svar doesn’t change.

Examples | >aA$ = "Bettendorf" : MD$(A$,7,2) = "BAD'
PRI NT A$
Bet t enBAr f

>SMDS(A$,9) = "rt" : PRINT A$
Bet t enBArt

>

10-64 Series 30/40 BASIC Guide

MTOP

Returns or sets the highest memory address available.

MTOP = iexpr

Whereiexpr isthe highest memory address (plus 1) that is available to your BASIC program.

Discussion MTOP setsor returns the highest memory address (plus 1) available to your
BASIC program. The usual value of MTOP is 32767. If you try to set MTOP
above the highest RAM location physically available, then BASIC issues a
“BAD ARGUMENT ERROR.”

The only reason to reduce MTOP isto use the space in order to save variablesin amore
efficient means than BASIC uses. For example, if you needed to save 5,000 integers, BASIC
uses six bytes for each one and would need 30/40,000 bytes. But you could use the XBY ()
command to store integersin only two bytes, which means your total memory requirement
would be 10,000 bytes.

Note When your program sets MTOP (using the format
MTOP = x), BASIC clears any variables already declared.
In other words, your program must set MTOP before doing
anything else.

Examples | >pr NT Mrop
32767

>

Commands and Statements

10-65

NEW

Deletes the program currently in memory and clears all

variables.

Command mode only

Discussion NEW erasesthe program and clearsall variables. You normally useit just
before you download or start writing a new program.

Examples

NEW

READY —
>NEW

RAM 1

10-66

Series 30/40 BASIC Guide

NOT

Returns a 16-bit 1's complement.

Discussion

Examples

NOT(iexpr)

Whereiexpr isavalid integer between 0 and 65535 (OFFFFh).

NOT inverts each bit of an integer.

10 I NPUT "Enter nunber ", A
20 B = NOT(A)

30 C = 65535 - (B)

40 PRINT B, C

>RUN
Ent er nunber 34
65501 34

READY — RAM 1
>

Commands and Statements 10-67

Discussion

ON ERROR GOTO

Enables error handling routine.

Run mode only

ON ERROR GOTO line#

Where line# is aline number in the program to which BASIC transfers control when it finds
an error. (Setting line# to O disables error handling.)

The ON ERROR GOTO statement tells BASIC to go to aroutineif an error
occurs. When an error occurs, whether BASIC isin the Run mode or the
Command mode, BASIC executes the routine starting at line number line#.

When BASIC entersthe error routine, it sets up the special variables ERR and ERL to hold the
error number and line number of the error; in any other situation, the status of these variables
isinvalid. In order to resume program execution, the error handler must exit with a RESUME
statement. See the description of RESUME for more information.

If the error handling routine terminates program execution (with the STOP, END, or ON
ERROR GOTO 0 statement), BASIC immediately printsthe error. If an error occurs within
the error handler, BASIC terminates program execution and reports the error.

See the Appendix for alist of error codes.

Some communications errors can occur asynchronously, which meansthat ERL may not be
valid. For example, if areceive buffer overflows, ERR will be correct but ERL will be the
number of the line that the Workstation was executing when the overflow occurred. For an
example, see the note under the description of the ERR and ERL statements earlier in this
chapter. Seethe error message listing in the Appendix for alist of the asynchronous
communications errors.

BASIC does not report asynchronous communications errors that occur during the error-
handling routine. Y our routine must RESUME before your program can detect that type of
error.

During debugging, you may want to set up your error-handling routine to print a status
message to the console and then immediately terminate program execution. In this case, most
of your status message may be lost, because BASIC clears its communications buffers before
printing an error message. In other words, BASIC erases any part of the message that still
remainsin the buffer. To ensurethat the buffer empties, you may want to add a FOR — NEXT
loop to idle a few seconds before ending the program.

You must be careful that your error-handler RESUMEs without disrupting control loops such
as GOSUB — RETURN or FOR — NEXT. For example, if your error handler RESUMES
outside a FOR — NEXT loap, the system'sinternal control stack will beleft out of whack.

10-68 Series 30/40 BASIC Guide

Examples | 10 oN ERROR GOTO 100

20 I NPUT A

30 B = 100/ A

35 PRINT "100 divided by";A " equal s";B

40 QOTO 20

100 I F ERR <> 10 THEN END

110 PRINT "You have attenpted to divide by zero!"
115 A=1

120 PRINT "W have substituted 1 for your input”
130 RESUME 30

>RUN

?34

100 divided by 34 equals 2.9411765

?0

You have attenpted to divide by zero!
We have substituted a 1 for your input

100 divided by 1 equals 100
2

Commands and Statements 10-69

ON ... GOSUB

Calls one of a list of subroutines.

Run mode only

ON expr GOSUB line#, line#. . . [line#

Where expr is an expression that BASIC automatically roundsto an integer; BASIC passes
control to the nth line#, wheren = expr + 1.

Discussion Thevalue of the expression determines which line number in thelist isthe
gtarting line of the subroutine that BASIC calls. For example, if the expression
is0, BASIC callsthefirst subroutinein thelist. BASIC ignores any fractional
part of the expression. The subroutine must end with a RETURN, at which
point BASIC passes contral to the next statement following the ON GOSUB
Statement.

Examples |10 INPUT"Enter nunber ", A

20 ON A GOsUB 100, 200, 300, 400
30 PRI NT " DONE"

40 @OrO 10

100 PRI NT"The answer to A was 0"
110 RETURN

200 PRI NT"The answer to A was 1"
210 RETURN

30 PRI NT"The answer to A was 2"

310 RETURN

400 PRI NT"The answer to A was 3"
410 RETURN

>RUN

Ent er nunmber 2.5

The answer to A was 2
DONE

READY — RAM 1
>

10-70

ON...GOTO

Branches to one of a list of lines.

Run mode only

Where expr is an expression that BASIC roundsto an integer; BASIC passes control to the nth

ON expr GOTO line#,line#. . . [line#

line#, wheren = expr + 1.

Discussion Thevalue of the expression determines which line number in thelist to which
BASIC transfers control. For example, if the expression is0, BASIC goesto
thefirst line number in thelist. BASIC ignores any fractional part of the

expression.

Examples

10 I NPUT "Enter nunber ", A

20 |F A >= 4 THEN 40

30 ON A GOTO 100, 200, 30/400, 400
40 PRINT "You blewit, Jack"

50 END

100 PRINT "The answer to A was 0"
110 GOT0O 10

200 PRINT "The answer to A was 1"
210 GOT1O 10

30 PRINT "The answer to A was 2"
310 GOT1O 10

400 PRI NT "The answer to A was 3"
410 GOTO 10

>RUN

Ent er nunber 2.5

The answer to A was 2
Ent er nunber 4

You blew it, Jack

READY — RAM 1
>

Series 30/40 BASIC Guide

Commands and Statements 10-71

Discussion

ON TIME = ... GOSUB

Sets up time-based interrupt handler.

Run mode only

ON TIME = expr GOSUB line#

Where expr is an integer setpoint for the timer; line# is the line number of the subroutine that
handles timer interrupts.

The ON TIME statement tells BASIC to call a subroutine after a specified
period of time. This“interrupt” capability makesit easy for you to set up
events to occur on aregular schedule. After BASIC executesan ON TIME
statement, it must then execute a CLOCK 1 statement in order to reset the timer
and enable the ON TIME interrupt.

After executing the CLOCK 1 statement, BASIC continually monitors the status of the timer,
which is stored in a special variable called TIME. When TIME isequal to or greater than
expr, BASIC callsthe subroutine beginning at line#. The best resolution possible from the
timer is 0.005 seconds, although you must plan on a “latency” or delay in handling the
interrupt until BASIC completes the statement it is currently executing. Thislatency could be
avery long timeif BASIC happensto bein the middle of an INPUT statement when the timer
times out.

Note If you want to use the ON TIME capability and still have
the capability of using the INPUT statement, you should
write a subroutine that emulates the INPUT statement. You
can use INKEY$ #0 or INPUT$(0,#0) to test for characters
received from the keypad and build response strings with
some additional decoding logic

If you want BASIC to execute the timer subroutine on a regular schedule, your
subroutine would have to reset TIME either at the beginning or the end of the
routine, depending on your requirements, with another CLOCK 1 statement.

If you want your timer subroutine to cancel further timer interrupts, your
subroutine should contain a CLOCKO statement. The subroutine can also
change the timer setpoint with another ON TIME statement. In any event,
your timer subroutine must end with a RETI statement, not a RETURN
Statement.

Examples This demonstration calls the timer subroutine at 1.105 second intervals:

10 PRI NT USI NG " ##### . ###"

20 ON TIME = 1.105 GOSUB 100

30 CLOCK1 : REM Reset timer and enable interrupts
40 PRINT TIME ; CR ;

50 FOR Z = 1 TO 30 : NEXT

60 GOTO 40

100 PRI NT TI ME

110 CLOCK 1 : RETI

10-72 Series 30/40 BASIC Guide

This demonstration calls the subroutine every second with virtually no accumulation of error:

10 PRI NT USI NG " #####. ###"

20T =1: ONTIME = T GOSUB 100

30 CLOCK 1 : REM Reset timer and enable interrupts
40 PRINT TIME ; CR ;

50 FOR Z = 1 TO 30 : NEXT

60 GOTO 40
100 PRINT TI ME
110 T= T+ 1: IF T >= 65536 THEN CLOCK 1
120 ON TIME = T GOSUB 100 : RET

OPEN COM

Declares a port's communication parameters.

OPEN “ port: {,param1} {,param?2} . .. {,paramN} " {AS #alias]

Where port is the hardware port designation followed by any combination and sequence of
optional parameters as specified in the table below, followed by an optional designation of an
alias. A full discussion of each parameter follows thetable.

Because the data between quotation marks is actually a string, you can use a string variable.
For example, OPEN A$ isavalid statement, provided A$ isin the correct format.

The display and keyboard are also considered to be a port; the following table summarizes the
port names and numbers:

Name Number Description
COMO 0 Keypad and display
COoM1 1 COM1 serial port

There are three “default” columnsin the following table because there are three situations
under which default conditions can occur:

Initial Default Refers to the status of the parameter the first time you power up.

OPEN Default Refers to the status of the parameter if you omit it. For example,
omitting the“TD” parameter sets up the port asif you entered
“TD100”; the only way to disable the TD parameter isto use “TDO"
in your OPEN statement.

Param Default Refers to the default value of the parameter if you omit the optional
number that follows the |etters.

Caution There are some combinations of parameters that could
cause unpredictable behavior. Within the sasme OPEN
statement, do not use CSwith TX; in other words, don’t
mix hardware handshaking and software handshaking.
Some parameters are mutually exclusive; you can select
only one of RS, RH, or RO; WA or SC; and CR or CL.

Commands and Statements 10-73
Para- Valid Initial OPEN Param
meter Port Description Valid Values Default | Default Default
Port all “COMO" = keypad/display 0-1
“COM1" =firgt serid port
Alias all Software port number; all program 0-5 Hard-
statements refer to this port by its alias, not ware
by its actual hardware port number. port #
Rate 1 Baud rate (communi cations speed) 110, 300, 600,1200, 2400, 9600 9600
4800, 9600, 19200
Parity 1 No, even, or odd parity N,E,O N
Data 1 Data size (if you set COM1 parametersto 7,8 8 8
7,N,1 or 7,N,2, you must set the other
deviceto 7,N,2)
Stop 1 Stop bits 1,2 1 1
1B all Enable buffered communications 1B
RS 1 Assert RTS during transmit
CSx 1 Wait for CTS before transmitting 1 to 255; 50 msec 100
resolution; 0 = disabled
RX 1 Generate XON/XOFF handshake on 1 to 255; 50 msec 100
receive; set timeto wait before generating resolution; 0 = disabled
error
TXx all Respect XON/XOFF handshake on 1 to 255; 50 msec TX100 100
transmit and set time to wait for XON resolution; 0 = disabled
TDx all Set time-out when waiting for input (for the | 0 to 255; 50 msec TD100 TD100 100
INPUT and INPUT$ statements) resolution; 0 = disabled
ED all Disable “echo” on INPUT
LF all Print line feed after carriage return LF
PSx 1 Trandate parity errorsto character of 0to 255 7Eh
ASCII code“x” “~")
LLx al Prevent lines from exceeding x; to disable, 0to 255 LLO LLO 0
setx=0
CE all Allow [Ctrl]-C received on this port to CE
cause a “break”
RH 1 Assert RTS when receive buffer empty
RN 1 Never assert RTS
RO 1 Assert RTS at the start of transmitting (and
leave asserted when finished)

The following parameters control only the Workstation’ s keypad and display, and are therefore valid only for COMO:

SC 0 Enable scrolling on display SC

WA Enable display to “wrap around” from last
character to first

CR 0 Enable automatic carriage return at end of
line on display

CL 0 Enable automatic carriage return/line feed CL
at end of line on display

IC Enable IBM PC ASCII code emulation

ARX 0 Enable keyboard auto-repeat and delay x * 0 to 255; 50 msec AR10 10
50 msec to first repeat resolution

RDx 0 Enable keyboard auto-repeat and delay x * 0 to 255; 50 msec RD2 2
50 msec between repeats resolution

10-74

Series 30/40 BASIC Guide

Alias

AR; Auto-Repeat
Enable

CE; [CtrI]-C
Enable

CL; Enable
CRLF

Note The CS and TD communications errors can occur
asynchronoudly, which means that ERL may not be valid.
For example, if areceive buffer overflows, ERR will be
correct but ERL will be the number of the line that the
Workstation was executing when the overflow occurred.
For an example, see the note under the description of the
ERR and ERL statements earlier in this chapter.

The aliasis an optional parameter that allows the software to refer to the port
by a different number. For example, OPEN “COM1:" AS#2 setsup COM1 as
port number 2. All further referencesto port 2, such as PR#2, IN#2, PRINT #2
and INPUT #2, refer to COM1.

The alias capahility is not very useful for the Series 30/40 Workstation, because it has only one
communications port. We suggest that you omit using the alias.

This parameter enables the auto-repeat capability on the keypad, which allows
the operator to hold a key down instead of pressing it repeatedly. Optionally
following this parameter is the delay between pressing the key and the first
repetition. The resolution of the delay time is 50 milliseconds.

For example, the parameter AR10 enables the auto-repeat function and configures the
Workstation to start repeating after 500 milliseconds (50 milliseconds * 10). The RD
parameter sets the speed of subsequent repeats; you can change the time between repeats from
the default value of 100 milliseconds.

Warning Y ou should not enable the auto-repeat function if there are
any keysthat cause your machinery to perform a potentially
hazardous control operation.

The CE parameter enables the Workstation to react to an ASCII character code
of 3asan interrupt. On most computers, you can generate this code by holding
down the [Ctrl] key while pressing the letter “C”; on the Workstation’ s keypad,
you can generate this code by holding down [F1] and [¢] at the sametime.

BASIC handlesa[Ctrl]-C interrupt as an error: it either terminates program execution or goes
to the routine specified by an ON ERROR statement.

The CL parameter affects only the operation of the Workstation’s display; if
you include the CL parameter when opening COMO, then BASIC
automatically moves the cursor to the first position of the next line after it
prints a character in the last column.

If the cursor is already on the bottom row of the display, then the action of the screen depends
on the WA and SC parameters. If the WA parameter isincluded, the cursor moves to the top
line; if the SC parameter isincluded, BASIC moves the bottom line to the top, clearsthe
bottom line, and leaves the cursor on the bottom line,

Commands and Statements 10-75

CR; Enable CR

CS; Wait for CTS

Data

ED; Echo
Disable

The CR parameter affects only the operation of the Workstation’ s display; if
you include the CR parameter when opening COMO, then BASIC
automatically moves the cursor to the first position of the current line after it
prints a character in the last column.

If you specify the CS parameter, then the Workstation requires the port’'s CTS
input to be asserted before transmitting. Thisis atype of “hardware
handshaking” where you connect a control line from another device that
indicates “ready to receive’ to the “Clear To Send” input of the port.

This capability is useful when the port is transmitting to a device that cannot
accept data at full speed. If the device has a hardware handshaking capability
for itsreceiver, then you can wireits output to the port’s CTS input.

When your program tries to transmit, the Workstation teststhe CTS input; if CTSis not
asserted, the Workstation starts atimer and continuesto test CTS. If CTSfails to be asserted
within the time limit, then BASIC issues a timeout error.

Optionally following the CS parameter is the setpoint for the timer; the resolution of thistimer
is 50 milliseconds. If you omit the timer setpoint, BASIC uses the default value of 100, which
is5 seconds. If you specify a setpoint of 0, then BASIC waits forever for CTS and never
generates an error.

Y ou can specify the number of bitsin each data byte as 7 or 8; the default
valueis 8. You must select the data size to match the data size of the device
you connect to the port. If you have a choice, we recommend you set the
deviceto adata size of 8 hits.

Note If you set COM1 to 7 data bits and no parity, then you must set
the stop bits of the device connected to COM1 to 2, regardless
of the number of stop bits you set for COM 1.

The ED parameter indicates that the Workstation should not “echo” characters
received on an INPUT statement.

Normally, the Workstation re-transmits every character to the current output port that it
receivesin responseto an INPUT statement. Thisis very nice when receiving input from a
person, but can be a problem when the port is receiving input from ancther intelligent device.

As an example, suppose the port is receiving data from a motion control system. In atypical
exchange, the port may send a command to the motion controller to send back its status. The
Workstation would then use an INPUT statement to receive this status information from the
port.

With echoing enabled, the Workstation would receive the status information and send it back
out to the mation controller (or whatever the current output deviceis). With echoing disabled,
the Workstation would simply receive the status information.

10-76

Series 30/40 BASIC Guide

IB: Enable ThelB parameter indicates that the Workstation should send and receive
characters using 255-character buffersinstead of 1-character buffers. The
differencesin operation are summarized in the table bel ow:

Buffers

Receive

Transmit

Opened with 1B

Opened without 1B

The Workstation can hold up to 255
charactersin its buffer for eventual
exchange with a BASIC program.
When the buffer isfull, the unit loses
additional charactersand BASIC
generates an overflow error.

The program can place up to 255
charactersin a buffer (using the PRINT
statement); the Workstation transmits
from the buffer while continuing to
execute the program.

If the program triesto PRINT when the
buffer is already full, the Workstation's
response depends on the status of the
port. If the port is actively transmitting,
then program execution stops until the
buffer is sufficiently empty for the
remaining characters.

However, if handshaking has made the
port inactive, BASIC returns a BUFFER
FULL error.

The Workstation can receive only one
character at atime. If the program fails
to take a character (using an INPUT,
INPUTS$, or INKEY $ statement) before
a second arrives, the unit loses the
second; BASIC generates no error.

If the port is actively transmitting,
program execution halts while the
Workstation transmits each character to
be PRINTed.

However, if handshaking has made the
port inactive, BASIC returns a BUFFER
FULL error.

Buffered communications are useful when the port is connected to another
device that can transmit to the port at any time, because the port receives the
charactersinto its buffer even if your program is not immediately ready to
receive them. The Workstation also transmits via a buffer, which means that
the user program does not have to wait while the port transmits.

You can use a special CALL to retrieve the current status of a buffer. After the
CALL, your program must POP the status of the buffer into a variable (for
example, CALL 40 : POP A returns A equal to the number of characters
remaining in the receive buffer of thefirst port):

CALL
40
41

Function
#1 receive
#1 transmit

In many applications, buffered communications can be a problem. For
example, if the port is connected to a device that “echoes,” then that device
sends back to the port every character it receives. With no buffers, however,
the port loses those characters, except perhaps the first character, which the
user program must discard.

When you enable buffered communications on COMO, the Workstation can
accept up to 255 keypresses before its buffer overflows; without buffers, the
Workstation remembers only the first keypress.

Commands and Statements 10-77

IC; IBM-
Compatible

LF; Line Feed
Enable

LL; Set Line
Length

Parity

Port

PS; Select Parity
Character

Rate

RD; Set Repeat
Rate

Inclusion of this parameter when opening COMO causes the Workstation to
display characters using the same ASCII codes asthe IBM PC’'s* multilingual”
code page, which is code page 850.

The Workstation’s display supports only a few of the foreign language characters, sothe IC
parameter isnot particularly helpful.

The LF parameter indicates that the Workstation should send a “line feed”
character after every “carriage return” character.

After the first power-up, this parameter comes up enabled; in an OPEN
statement, however, the default isdisabled. In order to enable this capability in
an OPEN statement, you must include the LF code.

The LF parameter is useful only when the port is transmitting to a relatively “dumb” device
likeaterminal. Many intelligent devices accept a carriage return as a terminating character
and reject the line feed as an error.

Y ou can specify the maximum length of alinewith the LL parameter followed
by the line length. When BASIC transmits (PRINTS) a character to that
maximum position, it automatically transmits a carriage return. To disable this
feature, you should simply omit this parameter. The LL parameter is primarily
useful when transmitting to a printer.

You can select N for no parity, E for even parity, or O for odd parity. You
must choose a parity selection that matches the device connected to the port. |If
you select even or odd parity and the port receives a character with the wrong
parity, it generates an error.

If you have a choice, we recommend you select E or O, but then you' Il probably need a routine
to handle any parity errors.

Every OPEN command must contain a designation for the hardware port you
are opening. The previous table lists the valid hardware ports.

The PS parameter specifies the ASCII code of the character that the
Workstation substitutes for any charactersit receives with a parity error. In
other words, the Workstation can trandate a parity error into ancther character
instead of reporting the error.

For example, the parameter PS126 causes the Workstation to substitute the character “~” in
place of any charactersit receives with an error in parity.

Y ou can specify a baud rate for the serial ports; the previous table lists the baud
rates that the Workstation supports.

The RD parameter enables the keypad’ s auto-repeat capability and sets the time
between the second and subsequent repeats. The resolution of the time delay is
50 milliseconds.

Y ou should see the description of the AR parameter for more information about
the auto-repeat capability.

10-78

Series 30/40 BASIC Guide

RH:; Receive
Handshake
Enable

RN:; RTS Never
On

RO: RTS On at
Start

RS; RTS On
During Transmit

RX; XON/XOFF
on Receive

SC; Scroll
Enable

Stop

TD; Set Input
Delay

The RH parameter enables “hardware handshaking” on the port’s receiver,
which is useful when your program is unable to receive from another device at
full speed.

The RH parameter causes the port to assert its RTS output whenever itsreceive
buffer islessthan 3/4 full. If you connect that RTS output to the CTS input of
another device, the other device will transmit only when the Workstation is
ready to receive.

Asa practical matter, when you use the RH parameter you should also select buffered
communications with the IB parameter.

The RN parameter causes the port to leave its RTS output off. This parameter
allows you to use CALL 30/40 effectively, because any other choice for RTS
handshaking renders CALL 30/40 ineffective.

The RO parameter causes the port to assert its RTS output at the start of
transmitting and to leave RTS asserted indefinitely. You can use CALL 30/40
to turn off RTS later.

The RS parameter causes the port to assert RTS only when it has charactersto
transmit. If the OPEN statement omits the RH, RO, and RS parameters, then
RTS remains asserted all thetime.

Y ou must include the RS parameter when you are using the port in an RS-422/485 application
because RTS also enables the transmitter itself. When RTS is not asserted, the transmitter
turns off, which allows another transmitter to communicate on the same wires.

The RX parameter enables “ software handshaking” using the XON/XOFF
([Ctrl]-Y[Ctrl]-Q) protocol when receiving.

When the Workstation’ s receive buffer becomes 75% full, the Workstation
transmits an “* XOFF’ character to the transmitting device, which should stop
sending. When the Workstation’ s receive buffer is emptied to less than 50%
full, the Workstation sends an “ XON” character to the transmitting device to
re-start communications.

Y our program should not enable RX if the other device does not support XON/XOFF, or the
Workstation may operate in an unexpected manner.

Asa practical matter, when you use the RX parameter you should also select buffered
communications with the IB parameter.

The SC parameter enables the Workstation’s display to scroll when printing
past the last character on the screen or before the first character. 1n most
applications, you should include the CL parameter as well.

Y ou can specify the number of stop bits that the port transmits after each data
byte as 1 or 2; the default valueis 1. You must select the data size to match the
data size of the device you connect to the port. If you have a choice, we
recommend you set the device s stop bitsto 1. When you set the number of
data bitsfor COM1 to 7 and set its parity to none, then you must set the
number of stop bitsfor COM1 to 2, because COM1 doesn’t support the
combination 7,N,1.

When you open a port with the TD parameter, BASIC starts a 5-second timer
at the beginning of an INPUT or INPUT$ statement and generates an error if
no input occurs during the time period.

Commands and Statements 10-79

TX; XON/XOFF
for Transmit

WA; Wrap
Enable

Examples

You can optionally specify a different timer setpoint following TD. The unit of measureis 50
milliseconds; for example, “TD10" tellsthe Workstation to wait for input no longer than 500
milliseconds (0.5 second) before issuing an error message.

This capability is useful to detect a fault without leaving the program “hung” while waiting for
input. If atime delay is enabled, then the Workstation can handle a“time-out” error with an
error-handling routine accessed by an ON ERROR statement.

To disable the timer, just enter a setpoint of O; for example: TDO.

The TX parameter configures the port for “software handshaking” using the
XON/XOFF ([Ctrl]-S/[Ctrl]-Q) protocol when transmitting. After receiving an
XOFF, the Workstation starts a 5-second timer; if it times out before the
Workstation receives an XON, the Workstation generates an error.

You can optionally specify a different timer setpoint following TX. The unit of measureis 50
milliseconds; for example, “TX10" tells the Workstation to wait for XON no longer than 500
milliseconds (0.5 second) before issuing an error message.

Your program should disable the TX capability if the transmitting device does not support the
XON/XOFF protocol. Thisisespecially important if the transmitting deviceis sending
“binary” data where an XON or XOFF character could be part of the data stream.

When you OPEN COMO with the WA parameter, the Workstation “wraps
around” to the first position on the screen after it printsto thelast position. In
most applications, you should include the CL parameter aswell.

10 OPEN "COMD: | B, CE, LF, CL, SC
20 OPEN "COML: | B, CE, LF, TX0O"

>RUN

READY — RAM 1
>

10-80

Series 30/40 BASIC Guide

Discussion

Examples

PHO. and PH1.

Prints numbers in hexadecimal format.

PHO. {#port#,} {expr} {, expr} ...
PHO. {#port#,} {expr} {; expr} . ..
PH1. {#port#,} {expr} {, expr} ...
PH1. {#port#,} {expr} {; expr} . ..

Where port# is an optional port number to print to and expr is an expression of any type to

print.

The PHO. and PH1. statements operate just like PRINT, except that they print
all numbersin hexadecimal format instead of floating point format. Consult

the description of PRINT for details.

The PH1. statement prints hex numbersin 4-digit format followed by the letter
H. The PHO. statement does not print leading zeroes unless the number isless

than 10h.

>A =34 : PHO.A: PHL A
22H
0022H

>A = 100 : PHO.A : PHL. A
64H
0064H

>A = 255 : PHO.A : PHL A
FFH
00FFH

>A = 256 : PHO.A : PHL. A
100H
0100H

>

>PHO. (66)
42H

>PHL. (66)
0042H

>PHO. (1000)
3E8H

>PHL. (1000)
03ESH

>

Commands and Statements 10-81

Pl
Equals p (3.1415926).

Discussion

Examples

Pl

Pl isuseful in many mathematical relations, such asthe area of acircle, (A =
pr2). You can use Pl as the constant in any formula requiring the value for (p).

Y ou may wonder why Pl equals 3.1415926 when it is actually closer to
3.1415927. Thereason isthat the SIN, COS and TAN functions are more
accurate if the equation PI = PI/2 + PI/2 holds true.

10 I NPUT "Enter radius of circle ",R
20 A = PI*(R*2)
30 PRINT "The area of the circle is ", A

>RUN
Enter radius of circle 2
The area of the circle is 12.56637

READY — RAM 1
>

10-82 Series 30/40 BASIC Guide

PLEN

Returns the length of your program.

PLEN

Discussion PLEN (Program Length) returnsthe length of your program in number of

bytes.

Examples | 10 I NPUT A$
20 A = LEN(A%)
30 PRINT A
40 PRI NT PLEN
>RUN
?Crcle tap
10
34

READY — RAM 1
>

Commands and Statements 10-83

Discussion

Examples

POP
Equates a variable to the number at the top of the argument
stack.

POP var

Where var is equated to the number popped from the stack.

POP sets var to the number at the top of the argument stack. See the description
of PUSH for more information about the stack.

Some built-in CALLSs return aresult on the argument stack that your program
must remove with the POP command. If there is no data on the argument stack,
then the Workstation issuesan A_STACK error.

10 CALL 40 : POP S
20 PRINT "Port #1 receive buffer size =", S

>RUN
Port #1 receive buffer size = 0

READY — RAM 1
>

10-84

Series 30/40 BASIC Guide

Discussion

Examples

POS

Returns the column number of the screen display’s cursor.

POS

The POS statement returns the column number occupied by the cursor on the
display. The column number varies between 1 and 20.

POS is a companion statement to CSRLIN, which returns the current line
number of the cursor, which varies between 1 and 2.

The following program continuoudly updates the time on the display
independently of the rest of the program. Line 100 saves the current cursor
position so that line 120 can restore it later.

10 AS: PR# O
20 ONTIME =1 GOSUB 100 : CLOCK 1

30 FOR1 =1 to 99999
40 PRI NT USI NG "#####" ;| ; CR,
50 NEXT

60 GOTO 30/40

100 RS = CSRLIN : CS = PGS
110 LOCATE 2,5 : PRI NT TI MES$;
120 LOCATE RS, CS

130 CLOCCK 1 @ RETI

Commands and Statements 10-85

PR#

Switches output to specified port.

PR# iexpr

Where iexpr isa port number between 0 and 4.

Discussion PR#directsall output from PRINT statementsto a specified port, although a
PRINT statement can contain a port selection that temporarily overrides the
PR# port selection.

The display and keyboard are also considered to be a port; the following table summarizes the
port names and numbers:

Name Number Description
COMO 0 Keypad and display
COoM1 1 COM1 serial port

Examples | 10 cs

20 PR#0: REM Sel ect Workstation's display for
printing

30 PRINT "This is the Wrkstation's display”

40 PR#1: PRINT "This is on the conputer screen”

>RUN
This is on the conputer screen

READY — RAM 1>

This is the Wrkstat
ion’s display

10-86

Series 30/40 BASIC Guide

Discussion

Spaces between
expressions

Suppressing the
carriage return/line
feed

Printing numbers

Print USING format

PRINT

Prints to an output device.

PRINT {#port#,} {expr} {, or ; expr} ...
or
? {#port#,} {expr} {, or ; expr} ...

Where port#is an optional port number and expr isany valid numeric and/or string
expression. Multiple expressions must be separated by a comma or semicolon.

You can use the PRINT statement to print any combination of characters,
strings, and numbers to the display or to the communications ports. The
following discussion describes the various options of this powerful command in
detail.

The PRINT statement can print one or more expressions, where each is
separated by a comma or semicolon. The comma inserts a space between each
expression, while the semicolon inserts no spaces. (Note that BASIC handles
commas differently than most BASICs, which use the comma as an implied
tab.)

At its conclusion, the PRINT statement sends a carriage return to the current
output device. By default, the Workstation sends a line feed after a carriage
return, although you can use the OPEN statement to defeat this feature (just
omit “LF’ from the parameter list). You can defeat printing the carriage return
by ending the statement with a semicolon or a comma.

BASIC prints positive floating point numbers with a leading space and
negative floating point numbers with aleading minus sign. The only way to
eliminate the leading space is to convert the number to a string with the STR$
statement. Y ou can adjust the output format of floating point numbers with the
USING statement.

BASIC prints hexadecimal numbers without leading or trailing spaces, but you
must use the alternative print statements PHO. or PH1.

A PRINT statement can contain one or more USING statements that apply only
to the following floating point numbersin the current statement. (However, if
USING appears alonein a PRINT statement, then that output format becomes
the default format for all subsequent PRINT statements; consult the description
of PRINT USING next in this chapter for more information.)

Commands and Statements 10-87

Printing multiple
spaces or tabs

Printing strings

Output port

Examples | >prINT 10 * 3

BASIC can print multiple spaces using the SPC operator; for example,
SPC(10) tells the Workstation to print ten spaces. Don’t forget, however, that
if the SPC operator is both preceded and followed by a comma, BASIC prints a
total of 12 spaces.

BASIC can aso skip to another column using the TAB operator. For example,
TAB(10) tellsthe Workstation to print enough spaces to move the cursor to
column 10 (unlessthe cursor is already past column 10).

The Workstation can print any character or group of charactersif they are
enclosed in double quotation marks. 1n order to print a double quotation mark
or “control” character with an ASCII value of less than 20h, however, you must
use the CHRS$ function. For example, to print a double quotation mark, your
program would read “PRINT CHR$(34).”

The output of the PRINT statement goes to the device selected by the most
recent PR# statement. However, you can override this selection for the current
PRINT statement by specifying a port number first. For example, PRINT #0,
“TEST” sendsthe string “TEST” to the Workstation’s display.

The display and keyboard are also considered to be a port; the following table summarizes the
port names and numbers:

Name Number Description
COMO 0 Keypad and display
COoM1 1 COM1 serial port

30

>PRINT "1 AM FI NE"
I AM FI NE

10 I NPUT "Enter tenperature", A

20 PRINT "The tenperature is "; A "degrees"
30 PRINT "The tenperature is ", A "degrees"
40 PRINT "The tenperature is "; A "degrees”
50 PRINT "The tenperature is ", A "degrees"

>RUN

Enter tenperature 78

The tenperature is 78degrees
The tenperature is 78 degrees
The tenperature is 78 degrees
The tenperature is 78degrees

READY — RAM 1
>

10-88 Series 30/40 BASIC Guide

10 I NPUT "ENTER NUMBER - ", A

20 I NPUT "ENTER SECOND NUMBER - ", B
30C=A+B: D=A*B

40 PRINT C D

>RUN
ENTER NUMBER - 12
ENTER SECOND NUMBER - 44

56 528
READY — RAM 1
PRINT USING

Sets up format for printing numbers.

PRINT USING sexpr

Where sexpr specifies the format of printed variables; “0” specifies the general floating point
format.

Discussion Theformat string that follows the USING statement specifies to BASIC the
output format for floating point numbers. The default format is“0”, which
means that BASIC prints floating point numbers according to its standard
rules. The# symbol indicates a character position; for example, the format
string “####” indicates that BASIC should print two digits to the |eft of the
decimal point and two digitsto theright. If you usetheletter “Z” in place of
the“#’ anywhere in the format string, then BASIC prints the leading zeroes.

The format string can include no more than eight “#” or “Z” symboals, because
BASIC stores numbers with only 8 significant digits.

If anumber istoo big to print according to the format statement, then BASIC
prints a question mark and then prints the number in the general floating
point format.

Floating point format The printed appearance of a number in the floating point format depends on
(USING “0") thesize of the number. If the number is between 0.000001 and 10,000,000,
then BASIC printsit just asit appears here. BASIC prints any number
outside that range in exponential format, whose general format is“n Ee”
where“n” is up to 8 significant digits of the number and “€” is the exponent
of the number.

BASIC prints positive numbers with aleading space and negative numbers with a leading
minus sign. To diminate the leading space, your program must first convert the number to a
string with the STR$ command.

Commands and Statements 10-89

A PRINT statement that contains only a USING statement (followed by the format string, of
course) does not actually print; instead, it Simply establishes the format as a“global” format
that appliesto all subsequent PRINT statements. A PRINT statement can override the global
format by including a USING statement that applies only to the remainder of the PRINT
Statement.

Examples The comma following the format statement prints a space before printing the
number; to suppress this, you should use a semicolon instead of a number.
Line 70 shows how to use the STR$ command to eliminate the leading space
for positive numbers.

10 PRI NT PI

20 PRI NT USI NG " ###. ##z", P

30 PRI NT USI NG " #. ###HH#H##", Pl

40 A$ = "#. ##" : PRINT USING A$; PI
50 PRI NT USI NG "##. ##", Pl *100

60 PRINT Pl * 10 ~ 10

70 PRI NT STR$(PI)

>RUN
3. 1415926
003. 141
3.1415926
3.14
? 314. 15926
3.1415926 E+10
3. 1415926

READY — RAM 1
>

10-90 Series 30/40 BASIC Guide

PUSH

Places an expression on the argument stack.

PUSH aexpr

Where aexpr isan integer or floating point number and is pushed onto the argument stack.

Discussion BASIC maintainsa“stack” whereit saves the intermediate results of various
calculations. The PUSH command simply eval uates the subsequent numeric
expression and leaves the result on the stack.

BASIC does not provide any standard statements that require a preceding

PUSH. However, BASIC supports some undocumented CALLsthat do require
aPUSH.

RAM

Selects a program for editing or inserts a copy of a program.

RAM prog#
or
RAM progl = RAM prog2

Where prog#, progl, and prog2 are numbers less than 256, and prog2 exists.

Discussion When you usethe command RAMX by itsdlf, it selects program x for editing. If
program x doesn’t exist, then BASIC creates a new empty program at the end
of the directory. For example, if you type RAM 5 when there are only three
valid programsin memory, BASIC creates a new, empty program at RAM 4
and selects RAM 4 for editing.

Toinsert a copy of one program before another, you would use the command format

RAMx = RAMy, which inserts a copy of program y before program x. If program x doesn’t
exist, then BASIC copies program y to the end of the directory. For example, if you type RAM
5=RAM 1 when there are only three valid programs in memory, then BASIC makes a copy of
RAM 1 at RAM 4.

Commands and Statements

10-91

Examples

READY - RAM 1
>RAM 2

READY - RAM 2

>DI R

RAM 1 (1000H, 0020H)
RAM 2 (1020H, 0020H)

READY - RAM 2
>RAM 4

READY - RAM 3

>DI R

RAM 1 (1020H, 0020H)
RAM 2 (1040H, 0020H)
RAM 3 (1060H, 0005H)

READY - RAM 3
>RAML = RAM 2

READY - RAM 3

>DI R

RAM 1 (1000H, 0020H)
RAM 2 (1020H, 0020H)
RAM 3 (1040H, 0020H)
RAM 4 (1060H, 0005H)

READY — RAM 3
>

PROGRAM 1
PROGRAM 2

PROGRAM 1
PROGRAM 2

PROGRAM 2
PROGRAM 1
PROGRAM 2

10-92 Series 30/40 BASIC Guide

REACT

Specifies the start-up action after reset.

REACT {par} {,par} ... {,par}

Where par isaparameter (R, RAMX, C or P) that alters the Workstation’ s start-up actions.

Discussion REACT (REset ACTion) allowsyou to set up the Workstation’s start-up
sequence. Typically, you use this command to make the Workstation
automatically RUN its program after reset.

Each REACT command replaces any previous REACT commands, except that the system
remembers REACT Cx commands. You can cancel all but REACT Cx by entering the
REACT command followed by no parameters.

If no parameters are listed, then the Workstation performs its default functions. The default
sequence after reset is:

1. Go to the Command mode.
2. Sdlect the default port as the console port (COM1).
Note If you want your program to auto-start, then you must use the
REACT command before you copy your program to ROM.

R; Run Program This parameter causes the Workstation to automatically run a program after
power-up.

READY — RAM 1
>REACT R

READY — RAM 1
>ROM = RAM 1

READY - RAML
>

C {#}; Console Thisparameter tellsthe Workstation which port is the console port. For
example, REACT C2 tellsthe Workstation to use port #2 as the console. You
should be careful, however, because this port selection refersto the alias and
not the actual hardware port number.

P: Protect Whenyou useit with the R parameter, the P parameter locks BASIC in the run
mode; if program execution terminates for any reason, BASIC simply re-runs
the program.

Note If you use the P parameter, you should provide a “back
door” to terminate program execution or you will be unable
to perform troubleshooting. If you find yourself unable to
terminate a program, then you must download new
firmware, which erases everything.

Commands and Statements 10-93

READ

Reads values from a DATA statement and assigns them to
variables.

READ var {,var} {,var} ... {,var}

Where var isany valid numeric or string variable.

Discussion TheREAD statement getsits datafrom DATA statements. Every time
BASIC READs a data, it points to the next item of data.

Unlike most BASICs, you must enclose DATA strings in quotation marks,
as shown in the second example below.

Examples |10 FORI =1 TO 6

20 READ A(1)

30 PRINT A(l), : NEXT

40 DATA 23, 56, 125, 400, 530, 409

>RUN
23 56 125 400 530 409

READY — RAM 1
>

If insufficient data existsto fill the list, an ERROR: NO DATA messageisissued. To re-read
DATA statements from the beginning, use the RESTORE statement.

10 FOR1 =1 TO 8
20 READ A$(1)

30 PRINT A$(1),

40 IF | = 6 THEN RESTORE

50 NEXT

60 DATA "ABC',"DEF","GH ", "JKL", "MNO', " PQR"

>RUN
ABC DEF GH JKL MNO PQR ABC DEF

READY — RAM 1
>

10-94

Series 30/40 BASIC Guide

REM

Indicates that the rest of the line is only a remark.

REM {remark}

Whereremark isany string of characters.
Discussion BASICignoreseverything following the REM statement until the end of the

line. Numbered REM statements occupy program memory.

If you write your program in aword processor, you should consider including
REM statements without line numbers. When you download your program to
the Workstation, the REM statements don’t take any program memory because
the Workstation doesn’t save them.

Examples |10 | NPUT
20 | NPUT
30 PRI NT
40 PRI NT
50 PRI NT
60 PRI NT
70 PRI NT

>RUN

180

49

11. 25
41
4100625

"Enter first nunber ", A

"Ente
A*B :

A+B :
A B :
A-B :
A'B :

second nunber ", B
REM MULTI PLY NUMBERS
REM ADD NUMBERS
REM DI VI DE NUMBERS
REM SUBTRACT NUMBERS
REM RAI SE TO EXPONENT

Enter first nunber 45
Ent er second nunber 4

Commands and Statements

10-95

RENUM

Renumbers all or part of a program.

RENUM {new}{,inc}{,start}{,end}

Where new isthefirst new line number, inc is the amount by which each subsequent line
number will be increased, start isthe old line number of thefirst line to renumber, and end is
the old line number of the last line to renumber. The default parameters are 100,10,0,65535; if
you omit any parameter, BASIC uses its default.

Discussion TheRENUM command isa handy way to renumber your program. You can
renumber all or part of your program, depending on whether you specify any

parameters.

You cannot use RENUM to re-arrange linesin your program. For example, you cannot
renumber lines 100 through 199 so that they appear after lines 200 through 299; if you try,
BASIC issuesa BAD ARGUMENT error instead.

If the system runs out of memory while renumbering, it prints the error message OUT OF
MEMORY. Thisnormally would happen only if you have very little memory remaining and
insufficient space remains for BASIC to store a table that holds the old line numbers and their
corresponding new line numbers.

Note

In very rare cases, it's possible for BASIC to run out of
memory while actually renumbering. This could happen if
free memory is almaost gone and a new line number makes a
linelonger than it used to be. For example, if GOTO 10
becomes GOTO 1000, then the line becomes two bytes
longer. If thereisinsufficient free memory to store the
longer line, BASIC issues an error message and stops
renumbering in the middle, which leaves your program
scrambled beyond use.

To avoid this problem, we recommend that you save your
program on disk before renumbering.

Examples |sLIsT

10 PRI NT "LINE 10" : ON ERROR GOTO 40
20 PRINT "LINE 20" : @QOTO 30

30 PRINT "LINE 30" : END

40 RESUVE 40

>

READY -
>RENUM

>L| ST
100 PRI NT "LINE 10" : ON ERROR GOTO 130/ 40
110 PRINT "LINE 20" : @GOTO 120
120 PRINT "LINE 30" : END
130 RESUME 120

READY -

RAM 1

RAM 1

10-96

Series 30/40 BASIC Guide

RESTORE

Resets the pointer to the DATA items.

RESTORE {line#}

Where line# is any valid line number.
Discussion

If you specify an optional line number after RESTORE, then BASIC resets the pointer to the

first DATA statement at or following the line number.

RESTORE resets the pointer used with READ and DATA statements. After
RESTORE, the READ starts with thefirst DATA statement again.

Examples 10 @GOSUB 100
20 RESTORE

30 @GOSUB 100
RESTORE 1010
50 GOSUB 100
60 END
FOR | =
RETURN
DATA 1,2
DATA 3,4,5,6

1 TO4 : READ X :

PRI NT X

NEXT : PRI NT

Commands and Statements 10-97

RESUME

Continues program execution at the end of error-handling.

Run mode only

RESUME {line#}
or
RESUME {NEXT}

Where line# is the line number where BASIC continues program execution at the conclusion of
the error-handling routine.

Discussion If you usethe ON ERROR capability, your error-handling routine must
terminate with a RESUME command in order to continue program execution.

If thereis no line#, BASIC continues execution where the error occurred; if RESUME is
followed by NEXT, BASIC continues execution at the statement following the statement that
caused the error.

Examples |5 oN ERROR GOTO 100

10 I NPUT "Enter first number ", A

20 I NPUT "Enter second nunber ",B
30 PRINT A*B : REM MULTI PLY NUMBERS
40 PRI NT A+B : REM ADD NUMBERS

50 PRINT A/ B : REM DI VI DE NUVBERS

60 PRINT A-B : REM SUBTRACT NUMBERS
70 PRINT A*B : REM RAI SE TO EXPONENT
80 END

100 REM ERROR HANDLI NG

110 IF ERR = 1 THEN END

120 IF ERR = 10 THEN PRINT "Can't divi de by
zero"

130 RESUME 60

>RUN

Enter first nunber 45
Ent er second nunber O
0

45

Can't divide by zero
45

1

READY — RAM 1
>

10-98 Series 30/40 BASIC Guide

RETI
Returns from ON TIME handling routine.

Run mode only

RETI

RETI has no additional parameters.

Discussion TheRETI statement terminates an ON TIME serviceroutine. The RETI
statement does the same thing as RETURN except that it also clears a software
interrupt flag so BASIC can handle subsequent interrupts.

Examples |10 oN TIME = 5 GOSUB 100

20 CLOCK 1

30 FOR I =1 TO 50 : NEXT

40 PRINT "Waiting for interrupt”, CR
50 GOTO 30

100 PRINT "Interrupt evoked at", TIME, "seconds”
120 CLOCK 1 : RETI

>RUN

VWaiting for interrupt

Interrupt evoked at 5.02 seconds
Interrupt evoked at 5.02 seconds

The above example works because of the RETI statement.

10 ON TIME = 5 GOSUB 100

20 CLOCK 1

30 FOR I =1 TO 50 : NEXT

40 PRINT "Waiting for interrupt”, CR
50 GOTO 30

100 PRINT "Interrupt evoked at", Tl VE,
"seconds”

120 CLOCK 1 : RETURN : REM TH S | S THE WRONG
RETURN

>RUN

Interrupt evoked at 5.02 seconds
VWaiting for interrupt

The above program does not work properly (only one interrupt executed) because the RETURN
statement was used instead of the RETI statement.

Commands and Statements

10-99

RETURN

Returns from a subroutine.

Discussion

Examples

RETURN

RETURN terminates a subroutine originally called with GOSUB. If the

subroutineis an ON TIME service routine, then you must use RETI instead of

RETURN.

10 FOR1 =1 TO 10

20 lF 1 = 6 THEN GOSUB 100

30 PRI NT |

40 NEXT

50 PRINT : "The job is finished"
60 END

100 PRINT "W are at nunber 6 now'
110 RETURN

RUN

V

are at nunber 6 now

@OO\IG)%U‘I-POONI—‘

10
The job is finished

READY — RAM 1
>

10-100 Series 30/40 BASIC Guide

RIGHTS$

Returns the rightmost characters of a string.

RIGHTS$(sexpr,iexpr)

Where sexpr isastring and iexpr isthe number of charactersin the result.

Discussion Ifiexpr isgreater than the number of charactersin the string, the entire string
isreturned. If iexpr iszero, anull string (Ilength 0) isreturned.

Examples |10 A$ = "Phoeni x"
20 B$ = RIGHT$(A%, 3)
30 PRI NT B$
>RUN
ni x

READY — RAM 1
>

>PRI NT RI GHT$(" Phoeni x", 3)
ni x

>

Commands and Statements 10-101

RND

Returns a random number between 0 and 1.

Discussion

Examples

RND

The RND statement returns a random number between 0.0000000 and
0.9999999. The Workstation always generates random numbersin the same
sequence after a power-up.

The random number “seed” is a 16-bit binary number, and the random
numbers that the Workstation generates are in the range of 0/65535 to
65535/65535.

10 FCR'I =1 TO 5
20 PRI NT | NT(RND*100)
30 NEXT

>RUN
57
88
95

3

36

READY — RAM 1
>

10-102

Series 30/40 BASIC Guide

ROM

Copies a program in RAM to permanent memory in Flash.

ROM = RAM prog#

Where prog# is a number less than 256.

Discussion TheROM command allows you to copy a program in RAM to the
Workstation’s permanent memory in Flash.

Examples

Note

To set up your program to start running automatically after
power-up, you must use the REACT R command before
you use the ROM command to copy your program to Flash.

READY - RAM 1

>DI R

RAM 1 (1000H, 0020H) - PROGRAM 1

READY - RAM 1

>REACT R

READY - RAM 1

>ROM = RAM 1

READY - RAM 1

>DIR

RAM 1 (1000H, 0020H) - PROGRAM 1

ROM 1 (AOOOH, 0020H) - PROGRAM 1

READY - RAM 1

>

Commands and Statements

10-103

RUN

Starts execution of a program.

RUN {line#} {RAM prog#}

Where line# is the line number at which to begin execution and prog# specifies which

program to run.

Discussion

RUN clears all variables and starts program execution. Y ou can optionally

specify aline number after RUN in order to begin execution with aline other
than thefirst, or you can specify a program number to run a program other
than the current. The valid combinations follow:

RUN

RUN line##

RUN RAMx
RUN line# RAMX

Runs the current program starting at thefirst line
Runs the current program starting at line#

Runs program x starting at itsfirst line

Runs program x starting at line#

Examples |10 PRINT 1,
20 PRINT 2,

30 PRINT 3

>RUN
123

READY —
>RUN 20
23

RAM 1

READY -
>

RAM 1

10-104 Series 30/40 BASIC Guide

SDIM

Sets the maximum length of a string.

SDIM var$(iexpr)
or
SDIM = iexpr

Where var isthe string name and iexpr isthe length of the string (between 1 and 254)

Discussion Thedefault length of astring variableis 10 characters. Y ou can assign another
length using SDIM, but you must do so before your program refersto the
string. If your program contains an SDIM that sets the length of a string that
your program has already referenced, then BASIC printsa REDIMENSION

error message.

Y ou can change the default length of string variables by using the second form
of SDIM shown above. For example, to change the default string length to 20,
your program should include the statement “SDIM = 20.” This statement does
not change the lengths of any strings that your program already defined.

SDIM sets up the length only of a scalar (non-array) string; to establish the
length of a string array, you must use the DIM statement.

You can use SDIM to set up more than one variable at atime; seeline 10 below
for an example.

Examples 10 SDI M A$(20), B$(35), C$(20), D$(50)

20 A$ = "Christmas tine"
30 B$ =" is for children,"
40 C$ = " and adults too."
50 D$ = A$+B$+C3

60 PRI NT D$

>RUN

Christmas tinme is for children, and adults too.

READY — RAM 1
>

Commands and Statements 10-105

The following program example produces an error at line 120 because it tries to change the
length of string variable A$ after your program has already created the string.

10 PRI NT A$

120 SDI M A$(30)

>RUN
ERROR: REDI MENSION - I N LINE 120

120 SDI M A$(30)
-------- X

SGN

Returns the sign.

SGN(expr)

Where expr is anumeric expression.

Discussion SON returnsalif theargument ispositive; a0 if the argument is zero; and a
-1if the argument is negative.

Examples |10 A=0: B=-4.56: C=56.98
20 PRINT SG\N(A), SGN(B), SG\(O)

>RUN
0O -1 1

READY — RAM 1
>

10-106 Series 30/40 BASIC Guide

SIN

Returns the sine.

SIN(expr)

Where expr isanumber or valid arithmetic calculation in radians.

Discussion Likeall numericfunctions, SIN may appear on the right of an assignment
statement, within a PRINT statement, and as part of an arithmetical
expression. The argument for the SIN function is a value expressed in radians;
divide degrees by 57.29577 to convert degreesto radians.

Trigonometric The sine of atriangleisthe length of the opposite side divided by the length of

Relationships the hypotenuse side (a/c). Seethefigure below for the relationships between
SIN @, side g, and side c.

+1

a SINEO i

@

0 90 180 270 360

SIN@d=alca=SIN@ cc=a/SINJ ANGLE (degrees)

Examples 10 INPUT "Enter angle in degrees ", A

20 INPUT "Enter length of side a ",L

30 R = A57.29577 : S =SINR : REM Cal cul ate sine
40 C=L/S: REMCalculate length of side C

50 PRINT "Length of side cis ";C

>RUN

Enter angle in degrees 30
Enter length of side a 70
Length of side c is 140

READY — RAM 1
>

Commands and Statements 10-107

SPC

Prints spaces in a PRINT statement.

SPC(iexpr)

Where iexpr must be between 0 and 255.

Discussion SPC printsthe number of spaces specified iniexpr in aPRINT statement.

Examples |10 A$="over" : B$="t here"
20 C$="insure" : D$="vehicl es"
30 PRINT A$; SPC(15); B$
40 PRINT C$; SPC(15); D$

>RUN
over t here
i nsure vehi cl es

READY — RAM 1
>

SOR

Returns the square root.

SQR(expr)

Where expr isanumber equal to or greater than zero.

Discussion SQR returnsthe squareroot of the number.

Examples |10 FOR X = 1 TO 21 STEP 4
20 PRINT X, SQR (X)
30 NEXT

>RUN

11

5 2.236068

9 3

13 3. 6055513
17 4. 1231057
21 4.5825757

READY — RAM 1
>

10-108 Series 30/40 BASIC Guide

ST@

Stores one or more variables in memory.

ST@ iexpr, varl {,var2} ... {,varx}

Whereiexpr isthe starting memory location to hold variable var1 and optional variablesvar2
through varx.

Discussion TheST@ statement stores one or more variables starting at a specified location
within memory. Thisis useful when your program must save numbers and/or
strings in either memory for later retrieval.

Thereisaspecial variable called VAD that holds the last address plus 1 used
by your most recent ST@ (or LD@) command. Thisis especially useful when
storing strings, because it hel ps you eliminate the bookkeeping that is otherwise
necessary to keep track of the next available location.

See the description of LD@ earlier in this chapter for a complete example of using ST@.

Commands and Statements

10-109

STOP

Terminates program execution.

Run mode only

STOP

Discussion When BASIC encounters a STOP statement, it terminates program

Examples

execution and prints the line number where it stopped. From the
Command mode, you can enter the CONT command to resume program
execution immediately after the STOP.

10 FOR X = 1 TO 21 STEP 4
20 PRINT X, SQR (X)

30 NEXT

40 STOP

50 FOR R = 1 TO 20

60 PRI NT R

70 NEXT

>RUN

11

5 2.236068

9 3

13 3. 6055513

17 4. 1231057

21 4.5825757
STOP - I N LINE 40

READY - RAM 1

>CONT
12345678910 11 12 13 14 15 16 17 18
19 20

READY — RAM 1
>

10-110

Series 30/40 BASIC Guide

STR$

Returns the string form of a number.

Discussion

Examples

STR$(expr)

Where expr is any numeric expression.

The STRS$ function isthe inverse of the VAL function; it turns a number into a
string. Thisis handy when you want to print a number without printing any
leading spaces.

STR$ converts expr to a string according to the current PRINT USING format,
except that it omits leading spaces.

10 I NPUT "Enter nunber ", A

40 A$3=STR$(A) : REM Convert Ato a string in A$
60 PRI NT USI NG "#z#. ##"

70 B$=STR$(A) : REM Convert according to USING format.
80 PRINT A: PRINT A$: PRI NT B$

>RUN

Ent er nunmber 12.578
12. 578

12. 578

012. 57

READY — RAM 1
>

Commands and Statements 10-111

TAB

Moves the cursor to the position specified.

TAB(iexpr)

Whereiexpr returns a number between 0 and 255.

Discussion WithinaPRINT statement, TAB tells BASIC to send enough spaces to move
the cursor to the column specified.

Examples |10 A$="over" : B$="t here"
20 C$="insure" : D$="vehicl es"
30 PRINT A$; TAB(15); B$
40 PRINT C$; TAB(15); D$

>RUN
over t here
i nsure vehi cl es

READY — RAM 1
>

Compare the printed result of this example to the example shown in the SPC description.

10-112

Series 30/40 BASIC Guide

TAN

Returns the tangent.

TAN(expr)

Where expr isanumber or valid arithmetic calculation in radians.

Discussion Likeall numericfunctions, TAN may appear on theright of an assignment
statement, within a PRINT statement, and as part of alogical expression. The
argument for the TAN function is a value expressed in radians; divide degrees
by 57.29577 to convert degreesto radians.

Trigonometric The tangent of atriangle is the length of the opposite side divided by the length

Relationshi
clationsnips TAN @, side a, and side b.

(0]
+10
a
TAN @ = alb TAN O
a=TANJ b -10
> b= a/TAN &)
b

of the adjacent side (a/b). Seethefigure below for the relationships between

o

0 90 180 270 360

ANGLE (degrees)

Examples | 10 INPUT "Enter angle
40 B=B*100 : B=B+0.5 :
>RUN

Length of side b is

READY — RAM 1
>

20 INPUT "Enter length of side a ",L
30 R=A/57.29577 : T=TAN(R) : B=L/T

50 PRINT "Length of side bis ";B

Enter angle in degrees 73
Enter length of side a 536

in degrees ", A

B=INT(B) : B=B/100 : REM ROUND

163. 87

Commands and Statements 10-113

Discussion

Examples

TIME

Returns or sets the built-in TIME variable.

TIME

BASIC has a special variable called TIME that increases every 5 milliseconds.
When TIME reaches the value of 65,535.995 seconds, it rolls over to O instead
of going to 65,536.

The CLOCK 1 command resets TIME to O, and if BASIC has already executed
an ON TIME command, then CLOCK 1 also enables the ON TIME interrupt.
(CLOCK 0 has no effect on the TIME variable; it smply disables the ON
TIME interrupt.)

Your program can also set the value of TIME by simply equating it to a
numeric value,

Consult the discussion of “ ON TIME” for more information.

The example below shows how your program can set the TIME variable but
that it continually increases:

>TIME = 43.5 : PRINT TI Mg, TIME

43.5 43.51
>

10-114

Series 30/40 BASIC Guide

Discussion

Examples | >TIME$ = "15: 34: 22"

TIMES$

Returns or sets the time of day.

TIME$ =“hh : mm : ss”

Where hh : mm : ssishours, minutes and seconds respectively in 24 hour format.

On power-up, the Workstation sets TIMES to “00:00:00.” Y our program can
set TIMES as shown in the box above. The Workstation considers missing
parameters to be zero; for example, if TIMES$ is“11:25:30/40", the statement
TIME$ = “12" setsthe time to 12:00:00.

The Workstation is accurate only to within a few minutes every day.

READY — RAM 1
>

>TI ME$ = "15: 34: 22"

READY — RAM 1

>LI ST

10 L$ = LEFT$(TI MES, 2)

20 MB = M D$(TI MES, 4, 2)

30 R$ = RI GHTS$(Tl MES$, 2)

40 PRINT "The tinme is ";L$;" hours, "; Mb; " mnutes

READY - RAM 1
>RUN
The time is 15 hours, 34 m nutes

READY — RAM 1
>

Commands and Statements 10-115

TROFF

Turns off tracing of program execution.

TROFF

Discussion TROFF turnsoff thetracing of program execution; consult the description of
TRON for more information.

Examples |10 FR1 1 TO 5

20 IF | = 3 THEN GOSUB 100
30 PRINT |

40 NEXT

50 END

100 PRINT "This is GOSUB"
110 RETURN

>TRON

>RUN

[10] [20] [30] 1

[40] [20] [30] 2

[40] [20] [2100] This is GOSUB
[110] [30] 3

[40] [20] [30] 4

[40] [20] [30] 5

[40] [50]

READY — RAM 1
>TROFF

>RUN

1

2

This is GOSUB

10-116

Series 30/40 BASIC Guide

Discussion

Examples

TRON

Enables tracing of program execution.

TRON

TRON tells BASIC to print to the console the line number (enclosed within
brackets) of each statement it executes. The TROFF command turns off the
trace mode.

10 FOR'1 1 TO 5

20 IF 1 = 3 THEN GOSUB 100
30 PRI NT |

40 NEXT

50 END

100 PRINT "This is GOsSUB"
110 RETURN

>TRON

>RUN

[10] [20] [30] 1

[40] [20] [30] 2

[40] [20] [2100] This is GOSUB
[110] [30] 3

[40] [20] [30] 4

[40] [20] [30] 5

[40] [50]

READY — RAM 1
>

VAD
Returns last address plus 1 used by the most recent ST@ or

LD@

Discussion

VAD

VAD returns the last address plus 1 used by the most recent ST@ or LD@
command.

See the description of LD@ for more details and exampl es.

Commands and Statements

10-117

Discussion

Examples

VAL

Converts a string to a number.

VAL (sexpr)

Where sexpr isastring expression whose contents are assumed to be numeric.

VAL converts astring to a number (note that thisisthe reverse of the STR$
function). If the string does not start with a digit, it hasavalue of 0. If the

string starts with a number but contains letters, VAL returns only up to the first

non-numeric digit.

VAL can return the value of strings in hexadecimal format, but you should
remember that a hex number ends with the letter H. If you want to convert a
hexadecimal string that does not contain the H, you can use HVAL instead.

10
20
30
40
50
60
70
80

>

| NPUT " Ent er
GOsUB 500

| F VAL(Z9)
| F VAL(Z9)
| F VAL(Z9)
| F VAL(Z9)
| F VAL(Z9)

END

>RUN
Ent er

READY —

RAM 1

area ZI P Code ", Z$

61201 THEN PRI NT "Rock Island, IL"
52748 THEN PRI NT " El dri dge, |A"
52804 THEN PRI NT " Davenport, |A"
61265 THEN PRI NT "Ml ine, IL"
53115 THEN PRI NT " Del avan, W"

500 PRINT "The city is ",
510 RETURN

area ZI P Code 52748
The city is Eldridge, 1A

10-118 Series 30/40 BASIC Guide
Returns the memory address of a variable.
VARPTR(var)
Where var is any variable name of any type.
Discussion VARPTR returnsthe starting addressin external memory of avariable. Your

Floating Point

Integer

String (scalar)

program can access external memory with the XBY () operator.
The storage format for various variable types is shown bel ow:

Byte Function

0 Mogt significant byte

1 Next most significant byte

2 Next least significant byte

3 Least significant byte

4 Sign (O if positive, 1 if negative)

5 Exponent (2 to 129 are negative exponents -127 to -1; 130/40 is
an exponent of 0; 131 to 255 are positive exponents 1 to 126).

Byte Function

0 Least significant byte

1 Mogt significant byte

2 Sign (O if positive, 1 if negative)

3 Equals 0 if integer is O; else equals most significant byte OR' ed
with least significant byte

4 Unused

5 Unused

Byte Function

0 Maximum allowed length of string plus 1

1 High byte of address where actual string is stored

2 Low byte of address where actual string is stored

3 Unused

4 Unused

5 Unused

The storage of the string itself begins with a length byte that is the actual length of the string
(not the maximum length allowed). The bytes following are the ASCII characters for the
string.

To find out the address of an array variable, var must refer to an element in the array. For
example, VARPTR(A(1)) returns the address of the second element in the floating point array
named A.

Commands and Statements 10-119

Not

ethat VARPTR operates differently for strings. It returns the same value regardless of the

array element:

String (array)

Examples

Byte Function

0 Maximum allowed length of string plus 1

High byte of address wherefirst string is stored
Low byte of address where first string is stored
Number of stringsin array

Unused

Unused

ga b~ WN B

>A = 10
>PRI NT VARPTR(A)
63479

>

VERSION

Returns the version number of the BASIC firmware.

VERSION

Discussion VERSION returnsthe version number of the BASIC firmwarein the
Workstation

Examples

>PRI NT VERSI ON
5.50

>

10-120 Series 30/40 BASIC Guide

XBY

Retrieves or assigns a value to external memory.

XBY(iexpr)

Whereiexpr returns a number between 0 and 65,535; if iexpr islessthan 32,768 (8000h), then
XBY refersto external data memory (RAM); otherwise, XBY refersto external code memory
(Flash EPROM).

Discussion XBY retrievesfrom or assigns a byte value to the external data memory at
addressiexpr. If your program refers to addresses at or above 32,768 (8000h),
then XBY refers to code memory, which is Flash EPROM.

Y ou must be careful not to use XBY to change code memory without careful study. Some of
BASIC itsdlf existsin the firmware space above 8000h, and BASIC stores your program at
OA0O0OCh in the same area. Please seethe discussion of LD@ earlier in this chapter for more
details.

Examples | >PH0. XBY(1000H)
12H

>

Chapter 11

Operators

Series 30/40 BASIC contains a complete set of arithmetic and relational operators. The
generalized form of all arithmetic operatorsis as follows:

expr op expr
where op is one of the arithmetic operators

Precedence BASIC scansan expression from left to right, performing operations of higher
precedence first and equal precedence from left to right. The order of
precedence for solving mathematical expressionsis as follows:

Operators that use parentheses ()
Exponentiation (")

Negation (-)

Multiplication (*) and Division (/)
Addition (+) and Subtraction ()
Relational Operators (=, <>, >, >=, <, <=)
Logical AND, OR, and INV

Logical XOR

© N o kA~ wWDRE

A good rule of thumb to follow is “when in doubt, use parentheses.”

Examples (10 A=4 +3* 2
20 PRINT A

>RUN
10

In the preceding example, BASIC first multiplies 3 by 2 and then adds 4.

10 A = 2 * (17 + 473)
20 PRINT A

>RUN
162

In the example above, BASIC first performs exponentiation (43), adds that result to 17, and
multiples that result by 2.

11-2

Series 30/40 BASIC Guide

+ (addition)

Returns the sum of numbers or joins strings.

exprl + expr2

Where expr1 and expr2 are any expressions. If both are strings, then BASIC joins string2 to

the end of stringl and returns that combination as a single string.

Examples |>PRINT 3 + 5

>

8
>A$ = "HELLO' : B$ = " THERE' : PRINT A$ + B$
HELLO THERE

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber", B
30C=A+B

40 PRINT : PRINT "The answer is ";C

>RUN

Enter first nunber 12
Ent er second nunber 14
The answer is 26

READY — RAM 1
>

Operators 11-3

— (subtraction or negation)
Returns the difference.

exprl —expr2
or
—expr3

Where exprl, expr2, and expr3 are numeric expressions.

Examples |>pPRINT 10 - 25
-15
>PRI NT - MICP
-8192
10 I NPUT "Enter first nunber", A
20 I NPUT "Enter second nunber", B
30C=A-B
40 PRINT : PRINT "The answer is ";C
>RUN

Enter first nunber 22
Ent er second nunber 14

The answer is 8
READY —

>

RAM 1

11-4 Series 30/40 BASIC Guide

* (multiplication)
Returns the arithmetic product of two expressions.

exprl » expr2

Where expr1 and expr2 are any numeric expressions.

Examples |[sSprINT 3 * 5
15

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber", B
30C=A*B

40 PRINT : PRINT "The answer is ";C

>RUN

Enter first nunber 12
Ent er second nunber 14
The answer is 168

READY — RAM 1
>

Operators 11-5

/ (division)
Returns the arithmetic quotient of two expressions.

exprl/expr2

Where expr1 and expr2 are any numeric expressions. If expr2 iszero, then BASIC issues a
DIVIDE BY ZERO error (error code 10).

Examples | >pRINT 100 / 25
4

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber",B
30C=A/ B

40 PRINT : PRINT "The answer is ";C

>RUN

Enter first nunber 22
Ent er second nunber 14
The answer is 1.571428

READY — RAM 1
>

11-6 Series 30/40 BASIC Guide

A (exponentiation)
Returns the arithmetic result of a number raised to an
exponent.

expr " iexpr

Where expr is any numeric expression; iexpr isan integer between 0 and 255.

Examples | >PRINT 6 7 4
1296

10 I NPUT "Enter first nunber", A

20 INPUT "Enter exponent",B
30C=A"B

40 PRINT : PRINT "The answer is ";C

>RUN

Enter first nunber 22
Ent er exponent 5

The answer is 5153632

READY — RAM 1
>

Operators 11-7
= (equal)
Compares two expressions and returns “true” if they are equal.
exprl =expr2
Where expr1 and expr2 are either both numeric expressions or both string expressions.
Discussion Reational expressionsinvolve the operators = (equal), <> (not equal), >

Examples | >PRINT 6 = 4

(greater than), >= (greater than or equal), < (less than), and <= (lessthan or
equal). These operators compare two numeric or string expressions and return
aresult of “true” or “false” Numerically, atrueresult is 65,535 and afalse
result isO.

The relational operators can work with either numeric expressions or string expressions. If a
relational expression contains an argument of each type, BASIC issuesa TYPE MISMATCH
error.

BASIC considers stringsto be equal or if they are exactly identical. BASIC compares strings
by taking one character at a time from each string and comparing their ASCII codes. If the
ASCII codes are different, then BASIC considers the lower to be less than the higher. If
BASIC reaches the end of one string without differences, then it considers the shorter string to
be less than the longer one. All characters and spaces count; BASIC does not ignore leading or
trailing spaces.

0

>A =3 : IF A= 3 THEN PRI NT " SAMVE"
SAMVE

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber",B

30 IF A =B THEN PRI NT "Nunbers are equal "
40 |F A <> B THEN PRI NT "Nunbers are not
equal "

>RUN

Enter first nunber 22
Ent er second nunber 22
Nunbers are equal

READY — RAM 1
>

11-8 Series 30/40 BASIC Guide

20 INPUT "Enter second string: ",B$
F

10 PRINT : INPUT "Enter first string: ", A$
I

30 IF A$ = B$ PRINT "Strings are identical"
I

40 IF A$ < B$ PRINT "First string is | ess than second"
50 IF A$ > B$ PRINT "First string is greater than
second”

60 GOTO 10

>RUN

Enter first string: ABC
Enter second string: ABC
Strings are identical

Enter first string: abc
Enter second string: ABC
First string is greater than second

Enter first string: ABC
Enter second string: ABCD
First string is |less than second

READY — RAM 1
>

<> (not equal)
Compares two expressions and returns “true” if they are not
equal.

exprl <> expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For acomplete description of relational operators, see the Discussion on page
12-7.

Examples |>pH0. 6 <> 6
OH

>PRI NT 4"3 <> 64
0

Operators

11-9

10 I NPUT "
20 I NPUT "

equal "

>RUN

Nunbers ar

>

Enter first

Enter first nunber 22
Ent er second nunber 102

e not equal

READY — RAM 1

nunber", A

Ent er second nunber", B

30 IF A =B THEN PRI NT "Nunbers are equal "
40 |F A <> B THEN PRI NT "Nunbers are not

< (less than)

Returns “true” if the first expression is less than the second.

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For acomplete description of relational operators, see the Discussion on page

Examples

exprl < expr2

12-7.

>PRINT 4 < 6
65535

>PRINT 6 < 4
0

>PRI NT 473 <
0

64

You can use the NOT statement in combination with relational operatorsto invert aresult, as
shown in the examples below:

11-10

Series 30/40 BASIC Guide

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber", B

25 PRI NT

30 IF A< B THEN PRINT "Result is true"

40 I F NOT(A < B) THEN PRINT "Result is not true"

>RUN

Enter first nunber 22
Ent er second nunber 22
Result is not true

READY — RAM 1
>

> (greater than)
Returns “true” if the first expression is greater than the second.

Discussion

Examples

exprl > expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

For a complete description of relational operators, see the Discussion on page
12-7.

>PRINT 4 > 6
0

>PRINT 6 > 4
65535

>PRI NT 473 > 4"3
0

You can use the NOT statement in combination with relational operatorsto invert aresult, as
shown in the examples below:

Operators 11-11

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber", B

25 PRI NT

30 IF A>B THEN PRINT "Result is true"
40 I|F NOT(A > B) THEN PRINT "Result is not
true"

>RUN

Enter first nunber 45
Ent er second nunber 22
Result is true

READY — RAM 1
>

<= (less than or equal to)
Returns “true” if the first expression is less than or equal to the
second.

exprl <= expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For acomplete description of relational operators, see the Discussion on page
12-7.

Examples | >prINT "12" <= "012"
0

>PRINT 6 <= 4
0

>PRI NT 473 <= 473
65535

You can use the NOT statement in combination with relational operatorsto invert aresult, as
shown in the examples below:

11-12

Series 30/40 BASIC Guide

10 I NPUT "Enter first nunber", A
20 I NPUT "Enter second nunber", B
25 PRI NT

40 | F NOT(A <= B) THEN PRI NT "Result
true"

>RUN

Enter first nunber 45
Ent er second nunber 22
Result is not true

READY — RAM 1
>

30 IF A<= B THEN PRINT "Result is true"

i's not

>= (greater than or equal to)
Returns “true” if the first expression is greater than or equal to
the second.

exprl >=expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For acomplete description of relational operators, seethe Discussion in

Examples

Chapter 11.

>PRINT 4 >= 6
0

>PRINT 6 >= 4
65535

>PRI NT 473 >= 473
65535

You can use the NOT statement in combination with relational operatorsto invert aresult, as
shown in the examples below:

Operators 11-13

10 I NPUT "Enter first nunber", A

20 I NPUT "Enter second nunber", B

25 PRI NT

30 IF A>= B THEN PRINT "Result is true"
40 I F NOT(A >= B) THEN PRINT "Result is not
true"

>RUN

Enter first nunber 45
Ent er second nunber 22
Result is true

READY — RAM 1
>

Chapter 12

Logic

BASIC provides the logic functions associated with industrial control applications. In all,
seven logic functions are available; these are:

Logic Function BASIC Function
AND AND

OR OR

XOR (Exclusive OR) XOR

INV (Invert) INV

NAND INV(AND)

NOR INV(OR)

XNOR (Exclusive NOR) INV(XOR)

Truth Tables Theresultsof logic functions to their inputs are summarized in the truth table
below. For the following, the function is assumed to contain two inputs,
however the truth table isidentical for any number of inputsto the function.

Result of Result of Result of Result of
Operation 0:0 0:1 1:0 1:1
AND 0 0 0 1
OR 0 1 1 1
XOR (Exclusive OR) 0 1 1 0
INV (Invert) (1 input only) 1 0
NAND 1 1 1 0
NOR 1 0 0
XNOR (Exclusive NOR) 1 0 0 1

12-2 Series 30/40 BASIC Guide

AND
Returns the logical AND.

iexprl AND iexpr2

Whereiexprl and iexpr2 are any positive integer expressions. Although contral logic results
are0 or 1, the AND operator does a “bitwise” AND on each hit of theintegers. For example:

Bit Format Decimal Format
0010 1011 43
AND 1010 0101 165
0010 0001 33
Relay Logic MIL STD Logic Symboal
A B A
R Iehb IChEh C
B
Truth Table
C=AANDB
A B C
0 0 0
0 1 0
1 0 0
1 1 1

Examples | >PRINT 3 AND 2
2

>PRINT 1 AND O AND 1 AND O
0

Logic 12-3

OR

Returns the logical OR of two expressions.

iexprl OR iexpr2

Whereiexprl and iexpr2 are any positive integer expressions. Although contral logic results
are0 or 1, the OR operator does a “bitwise” OR on each bit of theintegers. For example:

Bit Format Decimal Format
0010 1011 43
OR 1010 0101 165
1010 1111 175
Relay Logic MIL STD Logic Symboal
A
A
ISR Shbb .
B i
--1[----- 1 B
Truth Table
C=A0ORB
A B C
0 0 0
0 1 1
1 0 1
1 1 1

Examples |>PRINT 4 R 1

>SPRRNT 1 OR0O OR1 R O
1

12-4

Series 30/40 BASIC Guide

XOR

Returns the logical exclusive-OR.

iexprl XOR iexpr2

Whereiexprl and iexpr2 are any positive integer expressions. Although contral logic results
are0 or 1, the XOR operator does a“bitwise” XOR on each bit of the integers. For example:

Bit Format Decimal Format
0010 1011 43
XOR 1010 0101 165
1000 1110 142
Relay Logic MIL STD Logic Symboal
A
- _H_ - - .’. - - =
1
B ' A
- _H _____ 1 C
A X
-1l
B :
- _] [_____ 1
Truth Table
C=AXORB
A B C
0 0 0
0 1 1
1 0 1
1 1 0
Examples | >PRINT 9 XOR 12

5

Logic 12-5

INV
Returns 0 if the expression <> 0; returns 1 if the expression =
0.

INV(iexpr)

Whereiexpr isany positive integer; if iexpr isnot O, then the INV operator returns O; if [expr]
isO, then INV returns 1.

Relay Logic MIL STD Logic Symboal

Truth Table
B = INV(A)
A B
0 1
1 0

Examples >PRI NT | NV(1)
0

12-6 Series 30/40 BASIC Guide

INV AND
Returns the logical NAND.

INV(iexprl AND iexpr2)

Whereiexprl and iexpr2 are any positive integer expressions. INV returns O if the result of
the AND is non-zero, and returns 1 if theresult is 0.

Relay Logic MIL STD Logic Symboal
A A
J;[i c
VIR B

Truth Table
C =INV(A AND B)

|—\|—\oo‘)>
HOI—‘O‘W
Ol—‘l—\l—“o

Examples |10 INPUT A : INPUT B
20 C=INV(A AND B) : REM NAND | ogic result
30 PRINT C

>RUN
?0
?1

1

READY — RAM 1
>

Logic

12-7

INV OR
Returns the logical NOR.

INV(iexprl OR iexpr2)

Whereiexprl and iexpr2 are any positive integer expressions. The previous numeric
examples don't really apply, since INV returns O if the result of the OR is non-zero, and INV

returns 1 if the result of isO.

Relay Logic MIL STD Logic Symboal
A B A
-H----H---- C
B
Truth Table
C=INV(A ORB)
A B C
0 0 1
0 1 0
1 0 0
1 1 0

Examples |10 INPUT A : INPUT B
20 C = INV(A CR B)

30 PRINT C

>RUN
?0
?1

0

READY — RAM 1
>

REM NOR | ogic result

12-8

Series 30/40 BASIC Guide

INV XOR
Returns the logical XNOR.

INV(iexprl XOR iexpr2)

Whereiexprl and iexpr2 are any positive integer expressions. The previous numeric
examples don't really apply, since INV returns O if the result of the XOR is non-zero, and INV

returns 1 if the result of isO.

Relay Logic MIL STD Logic Symboal
A B
-1-- - A
C
A B B
- _]/[_ - _H_ _I.. -
X |
- —- _] [_____ 1
Truth Table
C=INV(A XOR B)
A B C
0 0 1
0 1 0
1 0 0
1 1 1
Examples |10 INPUT A : INPUT B
20 C = INV(A XOR B) REM XNOR | ogi ¢ result
30 PRINT C
>RUN
?17
?17
1
READY — RAM 1
>

Chapter 13

CALLs

To make specific features of the Workstation easier to use, we' ve included some built-in
subroutines that you can access through a CALL statement. If the number following the CALL
is between 1 and 127, then the CALL refersto a built-in subroutine, not to a machine language
subroutine you may have placed in memory yourself.

When a CALL requiresthat you provide data, your program must first PUSH the data on the
stack; other CALLsreturn aresult that you must POP after the CALL. Therest of this chapter
describes each CALL and indicates when it requires input data or returns output data.

If the CALL does not require input or return aresult, you need only the CALL alone, as shown
in the format bel ow, whereiexpr isthe number of the CALL.

CALL iexpr

If the CALL requiresinput, you must PUSH the data on the stack first, as shown in the
following format, where expr must return a numeric result:

PUSH expr : CALL iexpr

If the CALL returns aresult, you must POP the result into a numeric variable after the CALL,
as shown in the following format:

CALL iexpr : POP var

13-2 Series 30/40 BASIC Guide

CALL 12
Clears to the end of the display.

CALL 12

Discussion CALL 12 erasesthe display from the current cursor position to the bottom
right corner of the screen.

>80 CALL 12 : REM dear to end of display

CALL 13

Clears to the end of the line on the display.

CALL 13

Discussion CALL 13 erasesthe display from the current cursor position to the end of the
current line.

>80 CALL 13 : REM Cear to end of |ine

CALLs 13-3

CALL 30
Turn on COM1’s RTS line.

CALL 30/40

Discussion CALL 30turnsontheRTSlineon COM1. In order for thistowork properly,
you must open COM1 with the RN parameter. CALL 33 turns off RTS.

>10 CALL 30 : REM Turn on COML RTS

CALL 33
Turn off COM1's RTS line.

CALL 33

Discussion CALL 33turnsoff the RTSlineon COM1. In order for thistowork properly,
you must open COM1 with the RN parameter. CALL 30 turnson RTS.

>10 CALL 33 : REM Turn off COML RTS

13-4 Series 30/40 BASIC Guide

CALL 38

Enters the on-line configuration menu.

CALL 38

Discussion CALL 38 entersthe on-line configuration menu, which allows you to
configure many of the Workstation’s operating parameters.

When you exit from the on-line configuration menu, the Workstation “warmstarts’ BASIC,
which meansthat it clearsall variables. Although arunning program can contain CALL 38,
exiting from the on-line configuration menu cannot return you to the program.

However, if you set up your Workstation with REACT R, then the unit automatically runs the
program after returning from the on-line configuration menu.

CALL 39

Enters the monitor.

CALL 39

Discussion CALL 39 entersthe Workstation’sinternal “ monitor” program. When you
enter the monitor, you see the following screen:

Debug Moni t or (V2. 00)
Ready>

When the monitor is running, you can download new firmware. You can
also type some special commands, including INIT, which performs afirst-
timeinitialization of BASIC and erases the current program from memory.
The other monitor commands are not useful.

CALLs

13-5

Discussion

CALL 40 and 41

Returns the number of characters in COM1 buffer.

CALL 40: POP var

These CALLs return the number of charactersin a port’sreceive or transmit
communications buffer. For example, if theresult of CALL 40 is 2, that means
that there are two characters waiting in port #1's receive buffer; your program
can fetch these characters with an INPUT or INPUT$ statement.

As another example, if theresult of CALL 41 is 15, that meansthat there are 15 charactersin
port #1's transmit buffer remaining to be sent; your program can watch this value to make sure
characters are going out; if the value doesn’t change, then transmitting has halted for some
reason.

CALL Function
40 Port #1 receive
41 Port #1 transmit

10 CALL 40 : POP A : Return nunber of characters in port#l
20 PRINT A

13-6

Series 30/40 BASIC Guide

CALL 82

Prints a list of all variables used.

Discussion

CALL 82

CALL 82 printsalist of all the variables created by your program. You
must execute this CALL after you run your program. Thelist isin the
sequence in which the variables are first used by your program. For each
itemin thelist that isan array, string, or string array, the list includes the
number of elementsin the array and/or the maximum length of the string.

>CALL 82

A$(127)
B$(27)
K$(27, 20)
K(27)

|

| %

| % 10)

%'UXEZ

Subroutines

Variables

Appendix A

Speed-up Hints

This section offers some programming techniques you can use to squeeze the maximum speed
out of your BASIC program.

Whenever BASIC executes an instruction that goes to a line number (GOTO,
GOSUB, ON ERROR and ON TIME), it starts looking for that line number
from the beginning of the program.

If you have subroutines that your program calls frequently, then you should
place them as close as possible to the beginning of your program. For example,
many experienced programmers start their programs with the instruction
“GOTO 1000" and use line numbers 10 through 999 for subroutines.

BASIC uses about 40 microseconds to scan through aline while performing a
line search. For example, if BASIC finds a subroutine at the 10th line instead
of the 110th line, it takes 4 milliseconds less timeto find it.

Each time your program creates a variable, BASIC assignsit to the next position
inthelist. And every time your program refersto a variable, BASIC looks
through the list starting with the first variable created.

To gain maximum speed in the use of variables, your program should create the
most-used variablesfirst. For example, if your program frequently refersto X
and Y, then your program could simply contain the following line to create
thosevariables: Y =0: X =0. Becauseyou listed Y first, BASIC findsit first.

BASIC uses 12 microseconds to scan through each variable when it searches for
avariable.

A-2 Series 30/40 BASIC Guide

Constants When BASIC encounters a constant, such as 7 or 3.2728, it must convert that
number into itsinternal format. Because this takes more time than simply
looking up a variable, you should convert frequently-used constants to variables
instead.

For example, you might want to initialize an array of 100 numbersto the value
55. Although each of the following routines accomplishes this, the second
routineis 25 milliseconds faster than thefirst:

10 REM Thi s uses a constant.
20 DI M D(100)
40 FOR1 =1 TO 100 : D(l) = 55 : NEXT

10 REM This uses a variable instead of a constant.
15 REM (And this is 25 mlliseconds faster!)

20 DI M D(100)

30 X = 55

40 FORI =1 TO 100 : D(1) = X : NEXT

Integer vs. BASIC performs 4-function arithmetic about twice as fast when using integer
Floating Point variables (indicated with the % symbol) instead of floating point.

For floating-point operations such as trigonometric functions, your program runs
faster if you use floating-point variables. When you useinteger variablesin
floating-point operations, BASIC converts the integer to floating point before
processing.

FOR ...NEXT Thebest way to speed up a FOR-NEXT loop isto omit the optional variable
Loops following NEXT. For example, although the following two lines are equivalent,
the second executes about 10% faster than the first:

10 FOR |
20 FOR |

O 1000 : NEXT I

1T
1 TO 1000 : NEXT : REM This is about 10% faster.

Appendix B

BASIC Differences

Differences between Series 30/40 BASIC and GW-BASIC

Hardware-
specific
functions

Variable labels,
arrays,
functions

Strings

Numbers

PRINT USING

Other
differences

This section describes the main differences between the BASIC in the Series 30/40

Workstation and the GW-BASIC in IBM-compatible PCs.

Because the Series 30/40 Workstation is fundamentally different from the IBM
PC, it lacks GW-BASIC’ s graphics, sound, disk-handling, microprocessor-
specific functions, DOS-specific functions, and some keyboard capabilities.

Because the Workstation’ s microprocessor has four distinct memory types
instead of the IBM PC’s single type of memory, Series 30/40 BASIC uses XBY,
DBY, CBY, and IBY commands instead of GW-BASIC’'s PEEK and POKE
commands.

Because the Workstation supports a much smaller memory, its labels have only
two significant characters while GW-BASIC supports up to 40. Also, Series
30/40 BASIC supports only single-dimension arrays, while GW-BASIC
supports up to 255 dimensions. Finally, Series 30/40 BASIC does not support
the function (FN) capability of GW-BASIC.

Series 30/40 BASIC requires you to specify the maximum length of a string (up
to 254 characters) before you use it; otherwise, its default maximum length is
10. In GW-BASIC, all strings may vary in size up to 255 characters, but when
the string spaceis full, GW-BASIC pauses to perform “garbage collection.”
Thanks to the Workstation’ s pre-defined string lengths, it never hasto take time
to collect garbage.

The numeric variable types available in Series 30/40 BASIC are fewer in
number and different from GW-BASIC's number types. The Workstation’s

floating point numbers have 8 digits of precision and a range of 10"99 t0 1099,
while GW-BASIC’ s floating point numbers have 7 digits (single-precision) or

17 digits (double-precision) of precision and a range of 103810 1038, Series
30/40 BASIC supports 17-bit integers that range from -65,535 to +65,535, while
GW-BASIC'sintegers are only 16 bits that range from -32,767 to +32,767.

The Workstation’s USING statement offers only a subset of the capabilities of
GW-BASIC s USING statement. However, because virtually all of the
unsupported features are handy only for accounting-oriented systems, you
probably won't fed the loss.

Series 30/40 BASIC does not support octal representation of numbers, but its
support for hexadecimal numbers significantly exceeds that of GW-BASIC.
Series 30/40 BASIC' s implementation of the OPEN command is significantly
different, and its storage format for variables means that the VARPTR function
yields significantly different results.

Appendix C

Memory Map

This section shows how BASIC uses the Workstation’s memory. At the end of this section is
an illustration of BASIC's use of the microprocessor’s memory. In order to understand fully
how this memory map works, you should be familiar with the internal and external memory
capabilities of the 8032 microprocessor and have data sheets for the microprocessor and Optrex
DMC20261INY-LY-NM LCD display.

Note This memory map is provided for your reference only and
is not guaranteed to remain consistent with future firmware
revisions.
Internal RAM DBY Address Function

00h to O7h Microprocessor registers

08h BASIC text pointer (low byte).

0%h Argument stack pointer (low byte; high byteisa
constant).

OAh BASIC text pointer (high byte).

0Bh to OFh Scratch pad registers.

10hto 17h Microprocessor registers used by XMIT service.

18hto 23h Microprocessor registers used by interrupt service routines.

20h.1 When low, disables all system timer functions except resetting the
watchdog (only during initialization).

20h.2 Indicates that the Flash EPROM contains valid firmware.

20h.3 Toggles every 2.5 milliseconds if the vector at 17Ah isinitialized.

20h.4 Unused; reserved for future use.

20h.5 Indicates the system timer is on a one-second tick.

20h.6 to 20h.8 Unused; reserved for future use.

21h.1 Indicates that COM1 has not finished transmitting.

21h.2 Unused; reserved for future use.

21h.3, 21h.4 Current state of the COM1 receiver; 00 = ready; 10 = halted dueto
handshaking.

21h.5 Indicates that COM1 needs to transmit an XON.

21h.6 Indicates that COM1 needs to transmit an XOFF.

21h.7 Scratch pad bit.

22h.1t0 22h.6 Unused; reserved for future use.

22h.7 Indicates to various internal routines that the system isinserting a
flashing character into the display buffer.

22h.8 Indicates to the internal line-finding routine that the caller wants to
point to the end of the current program.

23h.1to 23h.6 Unused; reserved for future use.

23h.7 Indicates when the display is displaying flashing characters as
Spaces.

23h.8 Indicates that the display routine should only write the character to

the display buffer without displaying it.

C-2

Series 30/40 BASIC Guide

DBY Address Function

24h.1 Indicates that a programming console is connected and active.

24h.2 Holds status of mode (command/run) bit for error-handler (in case
error-handler doesn’t conclude with a RESUME).

24h.3 Disables echoing of input for INPUT statement.

24h.4 Enables printing LF after CR.

24h.5 Set if an ON ERROR handler is currently executing.

24h.6to 24h.7 Unused; reserved for future use.

24h.8 Indicates that the STOP statement was executed.

25h.1 Indicates that ON TIME interrupts are enabled.

25h.2 Indicates that an interrupt isin progress.

25h.3 Reserved for future use.

25h.4 Indicates that an ON ERROR statement was executed.

25h.5 Indicates that an ON TIME interrupt isin progress.

25h.6 Indicates ON TIME statement was executed.

25h.7 Unused; reserved for future use.

25h.8 Indicates that the CONT command will work.

26h.1 Indicates that no program changes have occurred (i.e., if reset,
indicates the user changed the program, which causes BASIC to
clear all variables).

26h.2 Indicates that BASIC isin the middle of executing an SDIM
Statement.

26h.3 Indicates that the internal error-processing routineis busy (in order
to inhibit asynchronous communications errors during error
processing).

26h.4 Scratch pad bit used by floating-point math routines.

26h.5 Indicates to the expression evaluator that the argument stack has at
least one value.

26h.6 Set when RETI executed; cleared during its processing.

26h.7 Indicates to the expression evaluator that an integer argument ison
the stack (only if the next bit is zero).

26h.8 Indicates to the expression evaluator that a string argument is on the
stack.

27h.1 Forces PRINT statement to use the display regardless of the
communication port configuration; used internally for displaying
messages on the screen (e.g., error messages).

27h.2 Enables program tracing (set by TRON, reset by TROFF).

27h.3 Indicates that a STR$ statement isin progress.

27h.4 Indicates that the Workstation isin the Command (or direct) mode;
when reset, indicates that a program is running.

27h.5 Unused; reserved for future use.

27h.6 Indicates to an internal routine that it is printing a message stored in
firmware,

27h.7 Indicates that PRINT should not print leading zeroes for a hex print
(i.e., PHO. executed).

27h.8 Indicates that PHO. or PH1. was executed and that PRINT should
print in hex mode.

28h to 29h Reserved.

2Ah to 3Dh Floating point temporaries.

3Eh Unused; reserved for future use.

3Fh Scratch byte

Memory Map

C-3

DBY Address Function

40h Milliseconds counter (5 msec resolution); free-running.

41h Milliseconds counter (5 msec resolution); correspondsto fractional
value of BASIC's TIME variable,

42h Scan counter (5 msec/scan) for reading keyboard every 50
milliseconds; essentially a down counter that starts at 10 and
decrements every 5 milliseconds.

43h Scan counter (5 msec/scan) for duration of keyboard beep.

44h, 45h Unused; reserved for future use.

46h.1 Keyboard buffer overflow error.

46h.2 Keyboard fault (invalid combination of two or more keys detected).

46h.3 to 46h.5 Unused; reserved for future use.

46h.6 [F1]-[¢] combination detected.

46h.7 Indicates that the input timer for keyboard has timed out.

46h.8 At least one character is availablein the keyboard buffer.

47h Run-time copy of selected configuration parameters for COM1.:

47h.1 XON/XOFF handshaking enabled on COM1 transmit.

47h.2 XON/XOFF handshaking enabled on COM1 receive.

47h.3 Parity and parity substitution enabled on COM1.

47h.4 Even parity selected on COM 1.

47h.5 Buffered communications enabled on COM1.

47h.6 RTS for receive handshake enabled on COM 1.

47h.7 [Ctrl]-C interrupts enabled on COM1.

47h.8 7-bit data size selected on COM 1.

48h.1 COM 1 receive buffer overflowed.

48h.2 Always 0.

48h.3 COM1 received parity error.

48h.4 Always 0.

48h.5 Always 0.

48h.6 COM1 received a[Ctrl]-C.

48h.7 COM1 input timer timed out.

48h.8 COM1 receive buffer not empty.

49h.1 COM1 CTSinput tested and not asserted.

49h.2 XOFF received on COM 1.

49h.3 t0 49h.6 Reserved for future use.

49h.7 COML1 transmit buffer full.

49h.8 COM1 transmit handshaking timeout was already reported.

4Ah to 50h Unused; reserved for future use.

51h Fractional part of ON TIME setpoint (equals fractional part * 5).

52h, 53h Pointer to program is saved herein case CONT executed (high byte,
low byte).

54h Internal pointer for string expression evaluation.

55h, 56h Temporaries for transcendental functions.

57h, 58h Whole portion of ON TIME setpoint (high byte, low byte).
READ text pointer (low byte)
5Ah Contral stack pointer (low byte; high byteis
a constant)

5Bh READ text pointer (high byte)

C-4

Series 30/40 BASIC Guide

DBY Address

Function

5Ch

5Dh
5Eh

5Fh to 60h
61h to FFh

Local/global printer port; if the high bit is set, the low nibbleisa
local printer port selection and the high nibble isthe global printer
port selection; the port number varies between 0 and 4.

PRINT USING format information.

Local/global input port; if the high bit is set, the low nibbleisalocal
input port selection and the high nibbleis the global input port
selection; the port number varies between 0 and 4.

Start of current program (high byte, low byte).

Microprocessor stack.

Memory Map

C-5

Special Function DBY Address

Registers

Function

80h
81h

82h, 83h
87h

88h
88h.1

88h.2

88h.3

88h.4

88h.5

88h.6

88h.7

88h.8

89h

89h.1, 89n.2

89h.3
89h.4

89h.5, 89n.6

89h.7

89h.8

8Ah, 8Ch
8Bh, 8Dh

Port 0.

Stack pointer.

Data Pointer (low byte, high byte).

Power control; bits 1-7 are reserved for future use; bit 8 doubles
baud rate when Timer 1 isthe baud rate generator.

TCON; Timer/Counter Control Register.

Interrupt O trigger: 1 selectsfalling edge, O selects low level
(default = 0).

Interrupt O edge flag; set when interrupt detected, cleared when
serviced.

Interrupt 1 trigger: 1 selectsfalling edge, O selects low level
(default = 0).

Interrupt 1 edge flag; set when interrupt detected, cleared when
serviced.

Timer 0 enable: 1 selectsrun, O selects stop (default = 0).

Timer O overflow flag; set on overflow, cleared when serviced.
Timer 1 enable: 1 selectsrun, O selects stop (default = 1).

Timer 1 overflow flag; set on overflow, cleared when serviced.
TMOD; Timer/Counter Mode Control Register.

If 00, TLO isa5-hit prescaler (13-bit 8048 mode); if 01, TLO and
THO are cascaded; if 10, TLO is an 8-bit auto-reload timer and THO
isitsvalue; if 11, TLO is an 8-bit timer controlled by Timer O bits
while THO is an 8-hit timer controlled by Timer 1 control bits. The
default setting is 01, which makes Timer 0 a 16-bit timer; Timer O
serves the TONE command.

Selects counter mode if set, timer mode if reset (default = reset).

If reset, Timer Oiscontrolled by bit 83h.5; if set, Timer Ois
controlled by a combination of bit 88h.5 and the active condition of
theinterrupt O input (pin INTO) (default = reset).

If 00, TL1 isa5-hit prescaler (13-bit 8048 mode); if 01, TL1 and
TH1 are cascaded; if 10, TL1 isan 8-bit auto-reload timer and TH1
isitsvalue; if 11, Timer 1 isstopped. The default setting is 00,
which makes Timer 1 a 13-bit timer; Timer 1 isthe baud rate
generator for COM1.

Selects counter mode if set, timer mode if reset (default = reset).

If reset, Timer 1 iscontrolled by bit 88h.7; if set, Timer 1is
controlled by a combination of bit 88h.7 and the active condition of
theinterrupt 1 input (pin INT1) (default = reset).

Timer O setpoint (low byte, high byte).

Timer 1 setpoint (low byte, high byte); this varies depending on the
baud rate of COM1.

C-6

Series 30/40 BASIC Guide

DBY Address Function

90h PORT 1.

90h.1 Selects low half of 128K Flash EPROM (active low); when this bit is
high, the upper half of a 128K Flash EPROM is sdlected. 128K
Flash EPROM is available as an option.

90h.2 Selects lower 32K of currently selected half of Flash EPROM,; thisis
useful only when programming the Flash.

90h.3 Disable Flash EPROM programming (active low); when thisbit is
low, the 32K block of data memory from O to 7FFFh isre-mapped to
the same addresses in code memory, while one of the four 32K
blocks of code memory is re-mapped to data memory starting at
8000h; the code block is selected with bits 90h.1 and 90h.2.

90h.4 COM1 RTS output (active low).

90h.5 Keyboard column select.

90h.6 Keyboard column select.

90h.7 Keyboard column select.

90h.8 Keyboard column select.

98h SCON; Seria Port Control Register.

98h.1 COMZ1'sreceiveinterrupt flag; set by hardware when a character is
received and cleared by software when the interrupt is serviced.

98h.2 COM1'stransmit interrupt flag; set by hardware when a character is
sent and cleared by software when the interrupt is serviced.

98h.3 Holds the 9th bit received in mode 2 or 3 (bits 98h.7 and 98h.8 set to
10 or 11) (default = unused); only used if configured for 8,N,2; 8,0;
8,E; 7,0,2; or 7,E,2.

98h.4 Holds the 9th bit to be transmitted in mode 2 or 3 (bits 98h.7 and
98h.8 set to 10 or 11) (default = unused); only used if configured for
8N,2; 8,0; 8E; 7,0,2; or 7,E,2.

98h.5 Receive enable (default = set).

98h.6 Enables multiprocessor communications (default = reset).

98h.7, 98h.8 If 00, serial port operates as a shift register at the one-twelfth of the
oscillator’ s frequency (11.0592/12 MHz); if 01, operates as an 8-bit
serial port with avariable frequency using Timer 1 or Timer 2; if 10,
operates as a 9-bit serial port at 1/32 or 1/64 of the oscillator’s
frequency; if 11, operates as a 9-hit serial port using Timer 1 or
Timer 2. The default is 01, which means that the COM1 port
operates as a smple 8-bit serial port; Timer 1 generates the baud
rate for the COM1 port.

9%h Serial data buffer; received data is read from this byte and
transmitted data is written to this byte.

AOh PORT 2.

A8h |E; Interrupt Enable Register.

A8h.1 Enables external interrupt O (default = disabled); because
COM1_CTSistied totheinput for external interrupt O, interrupts
are enabled only when CS handshaking is enabled.

A8h.2 Enables Timer O interrupt (default = disabled; enabled when TONE
or BEEP statement isin progress).

A8h.3 Enables external interrupt 1 (default = enabled; thisinterrupt comes
from the VLS| 16C452 communications chip that handles COM2,
COM3, and LPTY).

A8h.4 Enables Timer 1 interrupt (default = disabled because Timer 1 isthe

baud rate generator for the COM1 serial port).

Memory Map

C-7

DBY Address
A8h.5

A8h.6
A8h.7
A8h.8
BOh

BOh.1
BOh.2
BOh.3
BOh.4
BOh.5
BOh.6
BOh.7
BOh.8
B8h

B8h.1

B8h.2
B8h.3
B8h.4
B8h.5
B8h.6

B8h.7
B8h.8
C8h

C8h.1

C8h.2

C8h.3
C8h.4

C8h.5
C8h.6

C8h.7

Function
Enables the COM1 seria port interrupt (default = enabled).

Enables Timer 2 interrupt (default = enabled).

Reserved.

Master Interrupt Enable (default = enabled).

PORT 3.

COM1'sreceiveline,

COM1'stransmit line.

Interrupt O input; COM1’'s CTS input.

Keyboard row read.

Keyboard row read.

Keyboard row read.

Microprocessor’ swrite line to external memory.

Microprocessor’ s read line to external memory.

IP; Interrupt Priority Register.

High interrupt priority select for external interrupt O (default = low),
which isCOM1' s CTSinput.

High interrupt priority select for Timer O interrupt (default = high),
which is used when beeping the horn.

High interrupt priority select for external interrupt 1 (default = low),
which isused for COM2, COM3, and LPT1.

High interrupt priority select for Timer 1 interrupt (default = low),
which is used as the COM1 baud rate generator.

High interrupt priority select for COM1 serial port interrupt
(default = low).

High interrupt priority select for Timer 2 interrupt (default = low),
which is used as the system timer.

Reserved for future use.

Reserved for future use.

T2CON; Timer/Counter 2 Control Register.

When set, enables captures on negative transitions at microprocessor
pin T2EX; when reset, auto-reloads occur either with Timer 2
overflows or negative transitions at T2EX when bit C8h.4 is set.
When either bit C8h.5 or C8h.6 is on, the setting of bit C8h.1
doesn’t matter and the timer does an auto-reload on overflow. The
default isreset in order to cause an auto-rel oad; this helpsthe
background interrupts occur at 5-millisecond periods with no
accumulation of error (except that caused by the oscillator’s
frequency).

Enables Timer 2 to operate as an external event counter; if reset,
Timer 2 operates as atimer (default = reset).

Enables Timer 2 to run (default = enabled).

Enables events at T2EX pin (if unused for serial port) (default =
disabled).

Enables using Timer 2 for the COM1 port’ s baud rate generator
when transmitting (default = disabled).

Enables using Timer 2 for the COM1 port’ s baud rate generator
when recelving (default = disabled).

If bit C8h.4 ishigh, then bit C8h.7 is set by hardware when a
capture or reload occurs on a negative transition of T2EX;
otherwise, if thisbit is set the microprocessor vectors to the Timer 2
interrupt service routine (default = reset).

C-8

Series 30/40 BASIC Guide

External RAM

DBY Address Function

C8h.8 Timer 2 overflow flag; set by hardware when Timer 2 overflows,
provided bits C8h.5 and C8h.6 are reset.

CAh, CBh Timer 2 setpoint (default = EEQOh to generate an interrupt every 5
milliseconds) (low byte, high byte).

CCh, CDh Timer 2 current value (low byte, high byte).

DOh Microprocessor’ s Processor Status Word (PSW):

DOh.1 Microprocessor’s parity flag.

DOh.2 Reserved for future use.

DOh.3 Microprocessor’ s overflow flag.

DOh.4, DOh.5 Register bank select bits; 00 = low bank, 01 = 2nd bank, 10 = 3rd
bank, 11 = 4th bank.

DOh.6 Scratch pad flag.

DOh.7 Microprocessor’s auxiliary carry flag.

DOh.8 Microprocessor’s carry flag.

EOh Microprocessor’ s accumulator.

FOh Microprocessor’s “B” register.

XBY Address Function

00h to 04h Firmware signature; BASIC s signatureis 15h 32h
71h 24h A5h; if the signature doesn’t match, BASIC
clearsthe REACT status, sets the consoleto port 1,
and resets all port configuration parametersto their
defaults.

05h Status of LED control register (because the hardware register is
write-only).

06h, 07h RAM size; 0 = faulty; 7FFFh = 32K; F7FFh = 64K.

08h Flash EPROM status; 0 = faulty; 80h = 64K; 81h = 128K.

09h Unused; reserved for future use.

OAh Unused; reserved for future use.

0Bh Display status; 0 = faulty; 1 = okay.

0Ch Always 0.

0Dh Always 0.

OEh Always 0.

OFh Always 0.

10h Always 0.

11h RAM signature, which should be 82h 59h 66h 24h; if the signature
doesn’t match, BIOS performs destructive tests on RAM, resets all
port configuration parameters to their defaults; and initializes all
hardware.

15h,16h Unused; reserved for future use.

17hto 19h Hours, minutes, and seconds for the time of day; these bytes are
BCD, not binary!

1Ahto1Ch Day, month, and year for the date; these bytes are BCD, not binary!

1Dh ASCII code for the date separation character; for example, BASIC
sets up this character as*/”, which isan ASCII code of 2Fh.

1Eh Dateisinput and displayed in the international format if thisbyteis
not zero.

1Fh Aliasfor COM5, the* memory” port (not accessible from BASIC).

20h, 21h Address pointer for the memory port; points to the next available
byte where the transmit routine will send the byte.

22h Aliasfor the console port.

Memory Map

C-9

XBY Address
23h

23h.1

23h.2

23h.3t0 23h.4
23h.5

23h.6
23h.7to 23n.8
24h

25h

26h, 27h

28h
29h
2Ah

2Bh
2Bh.1
2Bh.2
2Bh.3
2Bh.4
2Bh.5
2Bh.6
2Bh.7
2Bh.8
2Chto 2Eh
2Fh

30/40h
31h
32h

33h
34h

35h
35h.1, 35h.2

35h.3
35h.4, 35h.5
35h.6 to 35h.8

36h

36h.1

36h.2

36h.3

36h.4, 36h.5

Function
Control byte for the keyboard:

Unused; reserved for future use.

Auto-repeat enable.

Unused; reserved for future use.

Buffer enable.

[F1]-[¢] enable.

Unused; reserved for future use.

Input timer setpoint.

Duration of keypress beep (50 msec resolution).

Reload value for beep timer; BASIC writes the number stored here
into the bytes at DBY (8Ah) and DBY (8Ch), which isthe Timer O
register.

Time delay until thefirst key repeat (50 msec resolution).

Time delay between repeats (50 msec resolution).

High byte of the page in external memory used for re-mapping the
keyboard’s ASCII codes. Currently, no configuration bit exists to
enable this capability.

Control byte for the display:

Unused; reserved for future use.

IBM PC-compatible map enable.

Unused; reserved for future use.

Enable for automatic carriage return at end of line.

Enable for automatic carriage return/line feed at end of line.
Scroll enable.

Wraparound enable.

Display re-map enable.

Unused; reserved for future use.

Cursor type; bits 1 and 2 select the type: 00 = undefined, 01 = solid
block; 10 = underling; 11 = undefined; bits 3 through 7 have no
function; bit 8 is the cursor enable.

Unused; reserved for future use.
Unused; reserved for future use.

High byte of the page in external memory used for re-mapping the
display’s ASCII codes before sending them to the display.

COM1ldias.

ASCII code for the character used to replaced those with parity
errorsreceived on COM1.

COM1 configuration parameters; byte 1:

COM1 data size: 00 = undefined; 01 = 7 bits; 10 = undefined; 11 =
8 hits.

COM1 stop bits; 0 = 1 stop bit; 1 = 2 stop hits.

COM1 parity; 00 = none; 01 = odd; 11 = even.

COM1 baud rate; 000 = 110; 001 = 30/400; 010 = 600; 011 = 1200;
100 = 2400; 101 = 4800; 110 = 9600; 111 = 19200.

COM1 configuration parameters; byte 2:

Parity trandate enable.

Buffer enable.

[Ctrl]-C enable.

Reserved for future use as DTR handshaking line control; always 0.

C-10 Series 30/40 BASIC Guide

XBY Address Function

36h.6 CTS handshake enable.

36h.7 Reserved for future use as CD handshake line enable; always 0.

36h.8 Reserved for future use.

37h COM1 configuration parameters; byte 3:

37h.1 XON/XOFF handshaking enabled on transmit.

37h.2 XON/XOFF handshaking enabled on receive.

37h.3 RTS always on.

37h.4 RTSon at the start of transmitting.

37h.5 RTS on only during transmitting.

37h.6 RTS receive handshake enable.

37h.7 Reserved for future use.

37h.8 Reserved for future use.

38h Setpoint for thetimer for CTS or XON/XOFF handshaking on
COML1 transmit.

3%h Setpoint for the timer for XON/X OFF handshaking on COM1
receive.

3Ahto4Ah Unused; reserved for future use.

4Bh Station number for monitor protocol.

4Ch to51h Time and date of last power-up.

52h, 53h Total quantity of power-ups since the last firmware download.

54h to 63h Unused; reserved for future use.

64h to 69h Time and date of last download.

6Ah, 6Bh Total quantity of firmware downloads since the beginning of time.

6Ch to 71h Time and date of last reset of the remaining diagnostic records.

72h, 73h Total quantity of diagnostic resets.

74hto 79h Time and date of last receive overflow error on COM1.

7Ah, 7Bh Total quantity of receive overflow errors on COM1.

7Chto 81h Time and date of last receive overrun error on COM 1.

82h, 83h Total quantity of receive overrun errors on COM1.

84h to 89h Time and date of last parity error on COM 1.

8Ah, 8Bh Total quantity of parity errors on COM 1.

8Ch to91h Time and date of last framing error on COM1.

92h, 93h Total quantity of framing errors on COM1.

94h to D3h Unused; reserved for future use.

D4h to D9h Time and date of last keyboard buffer overflow error.

DA, DBh Total quantity of keyboard buffer overflow errors.

DCh Reset source:

DCh.1 Power up.

DCh.2 Reserved; always 0.

DCh.3 Reserved; always 0.

DCh.4 Software.

DCh.5 First time,

DCh.6to DCh.8 Undefined.

DDh to E4h Reserved.

E5h If set to 47h, enablesinternal flash access routines to reference
routines downloaded to RAM instead.

E6h, E7h Address of RAM-based flash write routine.

E8h, ESh Address of RAM-based flash erase routine.

XBY Address Function

Memory Map

C-11

EAh, EBh
ECh
EDh
EEh

EFh

FOh

Flh
F2h

F3h

F4h
F5h
Féh to F7h
F8h

Foh

FAh

FBh

FCh to FFh
100h to 127h
128h to 155h
156h

157h

158h

159h

15Ah

15Bh to 15Fh
160h to 171h
172hto 177h
178h to 179h
17Ahto 17Dh

17Eh to 17Fh
180h to 1CFh
1D0h

1D1h to 1FFh

Address of RAM-based flash test routine.
Internal timer to service display (5 msec resolution).
Actual value of keyboard auto-repeat timer.

“Raw” code of the key held down on the previous scan of the
keyboard; FFh indicates no key pressed; used for key debouncing.

“Raw” code of the key held down on this scan; FFh indicates no key
pressed.

“Raw” code of the last keypress recognized; used for auto-repeat
sensing.

Unused; reserved for future use.

Keyboard “head” pointer; increments when a character is removed
from the keyboard buffer.

Keyboard “tail” pointer; increments when a key isinserted to the
keyboard buffer.

Current row position of cursor (O to 3).
Current column position of cursor (0 to 19).
Unused; reserved for future use.

COM1 receive “head” pointer; increments when the system removes
a character from the receive buffer.

COM1 receive “tail” pointer; increments when the service routine
receives a character from the port and adds it to the receive buffer.

COM1 transmit “head” pointer; increments when the service routine
removes a character from the buffer and sends it out the port.

COM1 transmit “tail” pointer; increments when the system adds a
character to the transmit buffer.

Unused; reserved for future use.
Display buffer; holds an image of the characters currently displayed.
Unused; reserved for future use.

Actual value of monitor’stimer for user entries (1 second
resolution).

Actual value of monitor’stimer for character times (50 msec
resolution).

Actual value of keyboard input timer.

Actual value of COM1 transmit handshake timer.

Actual value of COM1 receive handshake timer.

Unused; reserved for future use.

Reserved for internal use.

Map of actual hardware port numbers for each alias.

Unused; reserved for future use.

Vector for firmware routine to be driven by the system timer service
routine every five milliseconds. Thefirst byteis 28h; the second
bytes are the high and low byte of the vector; the last byteis an
exclusive OR checksum of the vector’ s two bytes.

16-bit seconds counter (high byte, low byte).

Flash enables for each character displayed; O = no flash; 80h = flash.
Workstation’s model number; lower two digits stored in BCD format
(30/40h = normal Workstation; 31h = 128K Flash EPROM).
Reserved for future use; contact Nematron if you want to reserve any
of thisarea for your own application.

C-12

Series 30/40 BASIC Guide

XBY Address Function

200h to 2FFh COM1 receive buffer.

30/400h to 3FFh COML1 transmit buffer.

400h to 8FFh Unused; reserved for future use.

900h to 9FFh Keyboard buffer.

AO0O0h to BFFh Reserved for internal use.

C00h to C14h Floating-point work area.

Set by REACT if “R” to auto-start program.
C15h.3 Set by REACT if “P’ to protect program by
locking it in the run mode.

Ci6h Console port number (default = 1).

C17h, C18h MTOP; highest address + 1 used by the program; if no buffers for
communications, MTOP equals VARTOP (high byte, low byte).

C1%h Program memory type for REACT command; high bit set if ROM,;
clear if RAM.

C1Ah REACT command’s program number.

C1Bh ROM type; 0 = none; 1 = EEPROM; 2 = EPROM; 3 = Flash

C1Ch, C1Dh Maximum RAM location available to program and variables.

C1Eh, C1Fh Unused; reserved for future use.

C20h Length of current program line.

C21h, C22h Line number of current program line (after entering or editing).

C23h Maximum line length (for current output port).

C24h, C25h Pointer to address of current line length (for current output port).

C26h, C27h Line number where error occurred.

C28h, C29h Starting address within code memory where error message is stored.

C2Ah Unused; reserved for future use.

C2Bh Saved input port (when going to error handler).

C2Ch Saved output port (when going to error handler).

C2Dh to C44h Communication parameter storage table. Each port uses four bytes:
thefirst byteis aflag byte, where the low bit is*echo disable’ and
the second bit is“line feed after carriage return enabl€e’; the second
byte is the maximum line length; the third byte isthe current line
length; and the fourth byte is unused. The parameters for each port
follow consecutively for COMO, COM1, COM2, COM3, LPT1, and
aspare.

C45h, C46h Pointer to the display’ s current line length (in case the display is
opened with an alias).

C47nh, C48h Saved text pointer when the last error occurred.

C4%h Current program number.

C4Ah to CFFh Control stack (used by FOR, DO, and GOSUB).

DOOh Error code.

DO01h, DO2h Line number of ON ERROR handler (high byte, low byte).

DO03h, D04h VARTOP, top of scalar variable storage (i.e., highest address of the
area where scalar variables are stored; variable storage begins at the
highest address and works down) (high byte, low byte).

DO5h, DO6h VARUSE; bottom of scalar variable storage (high byte, low byte).

DO7h, D08h DIMUSE; top of array variable storage (i.e., highest address of the
areawhere array variables are stored; storage begins at the end of
the program and works up) (high byte, low byte).

D09h, DOAN Random number seed.

DOBh, DOCh Current value of VAD (high byte, low byte).

Memory Map

C-13

Memory-Mapped I/O

XBY Address
DODh
DOEh, DOFh

D10h to D15h
D16h to D1Bh
D1Ch, D1Dh
D1Eh, D1Fh
D20h

D21h to DFFh
EOOh to EFFh
FOOh to FFFh
1000h to MTOP

1000h

XBY Address

Function

Default string length plus 1 (if not otherwise assigned with SDIM).
Text pointer of ON ERROR line (in caseit refersto aline number
that doesn’t exist).

Floating point temporary result.

Floating point temporary result.

Reserved for future use.

Line number of ON TIME handler (high byte, low byte).

Global PRINT USING format.

Argument stack.

Buffer for string manipulations.

Input buffer for INPUT statement.

Program, array variables, free space, and scalar variables (in that
order).

Start of first program. The header consists of four bytes; the first
byte, which indicates the presence of avalid program, isOFAh. The
second byte is 28h if the checksum should be valid; if it is not 28h,
which happens after the user has changed a line, then the next RUN,
GOTO, or GOSUB re-calcul ates and stores the checksum. Thethird
and fourth bytes are the checksum.

The rest of the program consists of itslines. Each line starts with a
one-byte line length; the next two bytes are the line number (high
byte, low byte); the remaining bytes up to the last isthe program line
itself. Each lineendsin a carriage return (decimal code 13). The
last line of the program has a length byte of 1 followed by a carriage
return. If aprogram follows, the byte following the last line's
carriage return is OFAh.

Function

800h
8001h

8002h
8003h

Display’s command register (for writing only).
Display’s data register (for writing only).
Display’s command register (for reading only).
Display’s data register (for reading only).

Series 30/40 BASIC Guide

C-14

Jd+V® 'Y DAOW
d1da+v® ‘¥ OAOW
(x)Ag0 Aq passaooy

(aremuwilid)

INOY 10SS8201d0IdIN

(aremuuliy
a|qepeojumoq)

(yd444 01 Yyo002)
INOYd3 yseld

Y4441
4y0oo0¢c

(WoY 01 paidoo
uaym) wreiboud Jasn

(wreaboud Jasn
Aq pasn jou) adeds aal4

Uooov

Y4444

04®@'V XAOW
d1dd® 'V XAOW
(x)Agx Aq passedoy

Aowaw sOIg pue DISvd

{444

Jayng uonelado bus

yood
U143

/uNg LNdNI

yood
U444

(Bunipa uaym) weiboud Jasn

(y4442 01 0)
NVY TYNY3LX3

yoooT

sbulnis pue sAelly

aoeds aal4

3SNNIA

So|qeleA Jeeass

ISNUVA

(do1n =) 408

(anpen nejap s11 uey] JaMo|
18S SI JOLIA J) a@2eds aa.4

dO1ldVA

y144.

(4ooos = Ae|dsiq)
O/l A3ddVIN-AYOWIN

40008

y44

0.V AON

(x)Aqaaq
Aq passaday

(ped yoreios
sSOIg pue O|Svg)

NVY TVNY3LNI

S431S193d
NOILONNS TVIO3dS

VY 1O34IANI

X\

\

0@V AON
HO08‘'0d AOW

(x)Aql
Aq passaday

ud.
yos

y44

Appendix D

Reference

Command Summary

Command

Description

Examples

ABS(expr)
exprl AND expr2

ASC(sexpr)
ASC(sexpr,iexpr)

ATN(expr)
BEEP

BIT(expr, bit#)
BIT(var, hit#)

CALL iexpr

CBY (iexpr)
CHR$(iexpr)
CLEAR

CLOCK 0
CLOCK 1

CLS
CONT
COPY iexprl,iexpr2,iexpr3

COS(expr)

CR

CSRLIN

DATA congt {,const}
DATES$

DBY (iexpr)

Returns the absolute value.
Returns the logical AND.

Returns ASCII value of first character or
character at position iexpr of string sexpr.

Returns the arctangent.

Not available on the Series 30/40 Workstations.

Reads from or writesto a bit in an integer.

Branches to built-in routine or machine
language subroutine.

Retrieves a byte from program memory.
Returns 1-character string of ASCII iexpr.
Clearsall variables.

CLOCKO disables ON TIME interrupts;
CLOCK1 resetsthe TIME variable to zero.

Clearsthe display; homes the cursor.
Resumes execution after program aborted.

Copiesiexpr3 bytes of external memory
from iexprl to iexpr2.

Returns the cosine.

Transmits carriage return without line feed.

Returns current line occupied by cursor.
Holds datain program for READ.
Returns or sets the date (* mnv/dd/yy”).

Reads or writes to internal RAM or special
function register.

X = ABS(=5) + ABS(6* (-5))
X =A AND 3
X = ASC(" A”) : PRINT ASC(A$,2)

X = ATN(A)

A=9:X=BIT(A2) :REMX =0
X =BIT(A4) =1: REM X =4

CALL 13

X = CBY(1000)
A$ = CHR$(64) : PRINT B$,A$
CLEAR

CLOCK 0
CLOCK 1

CLS
CONT
COPY 4000,X,21

X = COS(A/PI)

PRINT expr, CR;

X = CSRLIN

DATA 34, 23: DATA “AA” *ER’
DATES$="12/23/89"

X = DBY(35)

D-2

Series 30/40 BASIC Guide

IOE

Command

Description

Examples

DEL iexprl,iexpr2
DEL RAM {prog}

DIM nvar (iexpr)
DIM svar(iexpr,iexpr2)

DIR

DO : UNTIL expr
DO : WHILE expr
DUMP iexprl, iexpr2

END
ERR
ERL
EXP(expr)

FOR var = gtart TO stop
{STEPincr} : NEXT

FREE
GOSUB line#
GOTO line#
HEX$(expr)
HVAL (sexpr)

IBY (expr)

Deletes linesiexpr1 through iexpr2.
Deletes all programs or program prog.

Declaresthe size of an array variable; for
strings, iexpr2 isthe length of each string.

Printsa directory of all programsin memory.

Loops until expr istrue (not zero).
Loops while expr istrue (not zero).

Prints external memory in hex format from
addressiexprl to addressiexprl + iexpr2.

Terminates program execution.
After error, contains error code.
After error, contains error line number.
Returns “€’ raised to the power of expr.

Loops a specified number of times.

Returns number of bytes available.
Branchesto subroutine at line#.
Continues program execution at linet.
Convertsto astring in hex format.

Returns the numeric value of sexpr
(assumed to be a hex number).

Reads/writesindirect internal RAM.

IF expr { THEN} statementl
X=25 THEN Y=12 ELSE Y=50

{ ELSE statement?}
IN# iexpr
INKEY $ {#port}

INPUT prompt,var
INPUT #port, var
INPUT$(iexpr{ #port})
INSTR({iexpr}, s1,82)

INT (expr)
INV (expr)

otherwise, performs statement2.
Switches input to port iexpr.

Returns a character, if available, from
the current input port or from port.

Requests entry to var.
Performs an INPUT from port.
Requests entry of length iexpr from port.

Returns position of string s2 within string
sl (starting at position iexpr of s1).

Returns largest whole number £ expr.

Returns O if expr ?0; returns 1 if expr = 0.

Not available on the Series 30/40 Workstations.

DEL 30: DEL 10,40
DEL RAM 2 : DEL RAM
DIM A(30) : DIM X(25),Y (30)

DIR

DO : UNTIL X=5
DO : WHILE A<8
DUMP 400h,100

END

PRINT ERR

X =ERL

X =EXP(12) : REM X = 162754.77

FORI1=1TO3: NEXT
FORX =A TOB STEP-1: NEXT

FREE
GOSUB 500 : GOSUB 1000

GOTO 40 : GOTO 100

A$ = HEX$(165) : REM A$ = “00A5"
X = HVAL(“FF’) : REM X = 255

PRINT IBY (108)

If expr ?0, performs statement1, |F

IFY >22 THEN GOSUB 25
IN#0
A$=INKEY$: B$ = INKEY$ #0

INPUT “Enter number”,A

INPUT #0, B

A$ = INPUT$(7) : B$ = INPUT$(0,#1)
X = INSTR(A$,B$)

X = INT(12.8) : REM X = 12
X = INV(A)

Reference

D-3

Command

Description

Examples

LD@ iexpr,var{,var}

LED

LEFT$(sexpr,iexpr)

LEN(sexpr)

LET var = expr

LIST {#port,} begin#,end#
LOCATE r,ct

LOG(expr)

MID$(sexpr,iexprl,iexpr2)
J="WS’

MIDS$(svar,iexprl{ iexpr2})

MTOP

NEW

NOT (expr)

ON ERROR GOTO line#
ON ex GOSUB line#, line#

ON expr GOTO line#, linet#

ON TIME=ex GOSUB linett

Retrieves data from address iexpr and
storesitin var.

Not available on the Series 30/40 Workstations.

Returns a string from the left of sexpr with
alength of iexpr.

Returns number of charactersin sexpr.
Optional form of var = expr.
Listsall or part of a program.

Positions cursor at row r, column ¢, with
cursor typet (O=none; 1=box; 2=underline).

Returns the natural logarithm.

Returns a new string, consisting of a
partial copy of sexpr starting at position
iexprl with alength of iexpr2.

Places a string within svar starting at position
iexprl and continuing for alength of iexpr2.

Returns or sets the top of memory.
Deletes program and clears all variables.
Returns 16-hit 1’'s complement.

Enables error handling routine.

Selects subroutine number ex and callsit.

Selects line number expr and goesto it.

Sets up time-based interrupt handler to call
the subroutine at line# when TIME 3 ex.

LD@ 8163,A%,X

A$ = LEFT$(AS$,4)

X = LEN(B$)
LETA=5:LET A = SQR(B)
LIST : LIST #1,40,200 : LIST ,40
LOCATE 2,2,2 : LOCATE ,4

X =LOG(34.55) : REM X = 3.542407
J3=MID$(*1WS10”,2,2):REM

A$="IPT” : MID$(A$,2) =* WS’
REM A$ = “IWS’

MTOP = 7138 : PRINT MTOP
NEW

X =NOT(23) : REM X = 65512
ON ERROR GOTO 700

ON A GOSUB 100, 200, 300
(gosub 100 if A = 0, 200 if A = 1, efc.)

ON A GOTO 100, 200, 300
(goto 100 if A =0, 200 if A = 1, etc.)

ON TIME =5 GOSUB 100

D-4

Series 30/40 BASIC Guide

Command

Description

Examples

OPEN "port: rate, parity,
data hits, stop hits,
parameters' AS #ex

expr OR expr

PHO. {#port,} {expr}
PH1. {#port,} {expr}
Pl

PLEN

POP var

POS

PR# iexpr
PRINT {#iexpr,} {expr}

Declares communication port’s
parameters:

port = COMO (display) or COM1

rate =
110,30/400,600,1200,2400,4800,9600 or
19200

parity = N (none); O (odd); E (even)
data bits= 7 or 8
stop bits=1or 2

parameters =

X Enable auto-repeat and set delay to x

Enable [Ctrl]-C interrupt

Enable automatic carriage return/line feed

on screen
Enable automatic carriage return on
screen

X Wait for CTS before transmitting

Disable echo during input

Receive and transmit via buffers

Enable IBM PC-compatible ASCII codes
Send line feed after carriage return

X Set line length to x
< Set parity substitution character to an

ASCII code of x

X Set auto-repeat rate to x
Assert RTS when receive buffer empty
Don't assert RTS at all
Assert RTS at start of transmitting
Assert RTS when transmitting
Use XON/XOFF when receiving
Enable screen scrolling

X Wait for input for a specified time
X Use XON/XOFF when transmitting
\ Enabl e screen wraparound

Returns the logical OR.

Same as PRINT but prints expr in 2-digit hex.
Same as PRINT but prints expr in 4-digit hex.

Equals 3.1415926.
Returns the length (in bytes) of program.
Setsvar to data at top of argument stack.

Returns current column number occupied by
Ccursor.

Switches output to port iexpr.

Prints expr to port iexpr.

OPEN "COM1:110, N, 8, 1,TX"
OPEN "COM1:1B,ED, TD30/40"
OPEN "COMQO:IB,CE,LF,CL,SC"

C=AORBORCORD
PHO. XBY (OE012h)
PH1. 1234

X =Pl

PRINT PLEN

CALL 40 : POP X

X = POS

PR#0 : PR#1

PRINT : PRINT A*B : PRINT “Hi”
PRINT #1, E, U, PLEN

Reference

D-5

Command

Description

Examples

PRINT USING sexpr
PUSH expr

RAM prog

RAM progl = RAM prog2

REACT {par} {,par}

READ var {,var}

REM remark

RENUM {new}{,inc}{, start}

{.end}

RESTORE {linet}

RESUME

RESUME line#

RESUME NEXT

RETI
RETURN
RIGHT$(sexpr,iexpr)

RND
ROM = RAM prog2

RUN {line#} { RAM prog}

SCAN
SDIM svar(len)
SGN(expr)

SIN(expr)
SPC(iexpr)
SQR(expr)

Sets up format of printed numbers.
Places expr on top of argument stack.
Selects program prog as the current program.

Inserts a copy of program prog?2 before
progl.

Specifies start-up action after reset.

none = desdlects all options.

R =run program 1 after reset.

P = protect program by locking it in run mode.
Cx = set console to port x

Reads DATA value and assignsto var.
Indicates remark is a comment.

Renumbers the lines from start to end; the new
first line number is new and subsequent line
numbers are incremented by inc.

Resets READ poainter to first DATA item or
tothefirst DATA item at or following line#.

Exits error-handler and resumes execution
at the line where the error occurred.

Exits error-handler and resumes execution
at linet.

Exits error-handler and resumes execution at
the line following where the error occurred.

Returns from ON TIME handling routine.
Returns to program from a subroutine.

Returns a string from the right of sexpr
with alength of iexpr.

Returns a random number between 0 and 1.

Caopies RAM program to permanent memory
in Flash EPROM.

Executes current program or program prog
at first line or linet.

Not available on the Series 30/40 Workstations.
Sets the maximum length of a string variable.

Returns the sign of expr; (0 if expr = 0;
lif expr > 0; -1 if expr < 0).

Returnsthe sine,
Printsiexpr spacesin a PRINT statement.

Returns the square root.

PRINT USING “##’ : PRINT USING I$
PUSH 1: CALL 21

RAM 1: RAM 2

RAM 2 = RAM 5

REACT B: REACT R, M, N
REACT RAM 1

READ A, B : READ A(l)
REM Thisis acomment.

RENUM : RENUM 10,100
RENUM 1000,10,120,290
RESTORE

RESUME

RESUME 120

RESUME NEXT

RETI
RETURN
BS$ = RIGHT$(A$,4)

X =RND
ROM = RAM 1

RUN : RUN 110 : RUN RAM 1
RUN 110 RAM 1

SDIM A$(45) : SDIM C$(30/40),B$(20)
X = SGN(A)

X = SIN(45)
PRINT SPC(4)
X = SQR(A)

D-6 Series 30/40 BASIC Guide
Command Description Examples
ST@ iexpr,var {,var} Stores var starting at memory address iexpr. ST@ 8163,A,X$
STOP Terminates program execution. STOP
STR$(expr) Converts expr to astring. A$ = STR$(X)
TAB(iexpr) Moves the cursor to position iexpr. PRINT TAB(12)
TAN(expr) Returns the tangent. X =TAN(A)
TIME Sets or returns the internal variable TIME PRINT TIME; CR;
(with a maximum value of 65535.995).
TIMES$ Sets or returnsthe current time (“hh:mm:ss’). TIMES$ = “15:34:00”
TONE Not available on the Series 30/40 Workstations.
TROFF Turns off tracing of program execution. TROFF
TRON Turns on tracing of program execution. TRON
VAD Returns the last address plus 1 used by ST@ VAD,X
the most recent ST@ or LD@. VAD =8192: LD@ VAD,A$
VAL (sexpr) Converts sexpr to a number. X =VAL(AY)
VARPTR(var) Returns the address in memory of var. X =VARPTR(A$)
VERSION Returns the current BASIC firmwareversion. X = VERSION
XBY (iexpr) Sets or retrieves an external memory byte. XBY (4012h) = 23
expr XOR expr Returns the logical XOR. C=AXORBXORCXORD
Operators
Operator Description Examples
expr + expr Returns the sum. C=A+B:PRINTA+B
expr — expr Returns the difference. C=A-B:PRINTA-B-C:C=3-2
expr * expr Returns arithmetic product. C=A*B:PRINTA*B*C:C=3*2
expr / expr Returns arithmetic quotient. C=A/B:PRINTA/B/C:C=3/2
exprl M expr2 Returns exprl raised to exponent expr2. C=45"3:A=B"C
—expr Negates an expression. C=-A:C=-56+A
expr = expr Compares two expressions for equality. X =4=4:REM X = 65535
expr <> expr Compares two expressions for non—equality. X=4<>4REM X =0
exprl <expr2 Comparesexprl for lessthan expr2. X =3<4:REM X = 65535
exprl>expr2 Comparesexprl for greater than expr2. X=3>4:REM X =0

exprl <= expr2

exprl >= expr2

Compares exprl for less than or equal to expr2.

Compares exprl for greater than or equal to expr2.

X =3<=4:REM X = 65535

X=4>=4:REM X = 65535

Reference D-7

CALLs

CALL Description Examples

CALL 12 Clearsfrom cursor position to end of display. CALL 12

CALL 13 Clearsfrom cursor position to end of line on display. CALL 13

CALL 30 Turn off the RTS line of COM1. CALL 30

CALL 33 Turn on the RTS line of COM1. CALL 33

CALL 38 Runs on-line configuration program. CALL 38

CALL 39 Runs monitor. CALL 39

CALL 40 Returns number of charactersin port #1 receive buffer. CALL 40 : POP var
CALL 41 Returns number of charactersin port #1 transmit buffer. CALL 41 : POP var
CALL 82 Printsalist of the variables used. CALL 82

Workstation Key Codes

The following table lists the ASCII codes and corresponding characters for
each key of the Workstation’s keypad. Thistable also lists the many two-
key combination characters that the Workstation supports:

Key(s) ASCII Code Character or Function
F1¢ 3 [Ctrl]-C

- 10 Linefeed

- 11 Reverseline feed
é 13 Carriage return
+ 43 +

— 45 —

F1F2 48 0

F2 - 49 1

-+ 50 2

+ X 51 3

F1 x 52 4

F3 F4 53 5

F4 — 54 6

- 55 7

- ¢ 56 8

F3¢ 57 9

X 127 Backspace

F1 241

F2 242

F3 243

F4 244

F1F3 245

F2F4 246

- 247

+— 248

X ¢ 249

D-8 Series 30/40 BASIC Guide

CTRL Characters Sent to Workstation

The following table shows the function that the Workstation performs when it receives a
“control” character from the Console. Y ou can create a control character by holding down the
[Ctrl] key while pressing another character.

Key Function ASCII Code
Ctrl]-H Move cursor one space to the left 08h
P

[Ctrl]-I Move cursor one space to the right 0%h

[Ctrl]-J Line Feed (move cursor down one line) OAh

[Ctrl]-K Reverse Line Feed (move cursor up oneline) 0Bh

[Ctrl]-L Form Feed (clear screen and home cursor) 0Ch

Ctrl]-M Carriage Return and, if enabled, Line Feed 0Dh
ag

Backspace Backspace 7Fh
P S

Ports

When communicating, the display and keyboard are also considered to be a port. The
following table summarizes the port names and numbers:

Name Number Description
COMO 0 Keypad and display
COoM1 1 COM1 serial port

Appendix E

Error Codes

The following table shows the Workstation’s error codes. If you write an “ ON ERROR”
routine, your routine must check the error code returned (ERR) as well as the line number
where the error occurred (ERL) in order to handle the error.

At the end of the table are “non-recoverable” errors; if one of these errors occurs, the
Workstation does not go to your error handler and instead simply stops program execution and
prints the error message.

Note While most errors occur while a specific statement is
executing, which meansthat you can easily detect its cause,
there are afew errorsthat can occur at any time which are
known as “asynchronous’ errors.

Examples of asynchronous errors include buffer overflow
errors, which BASIC reports at the instant the buffer
overflows and without regard to the statement it is currently
executing.

When BASIC reports an asynchronous error, the error
number (ERR) isvalid but the error line (ERL) is usually
irrelevant, because the error can occur at any time.

Asynchronous errors are noted in the table below with an

asterisk.

Code Error Message Description

1 BREAK User pressed [Ctrl]-C or [F1]-[¢]; a user-written error handling routine can
“trap” [Ctrl]-C to go to an appropriate point in the program.

10 DIVISION BY ZERO There's till no mathematical definition for x/0.

20 OVERFLOW Floating point operation result exceeded +.99999999E+127 or integer
operation result exceeded * 65,535.

30 UNDERFLOW Floating point operation result was smaller than + 1E-127.

40 BAD ARGUMENT Illegal addressfor DBY'; invalid parameter or parameter format in OPEN or
REACT statement; invalid argument for TIMES$ or DATES; invalid parameter
for CHRS$, LEFTS$, RIGHT$, MIDS$, INPUT$ or INSTR$ statement (i.e.,
integer exceeds 255); bit number outside therange 1to 16 in BIT statement;
bad argument in LOCATE statement; parameter greater than 255 in many
other statements.

50 TYPE MISMATCH Function that expects a string gets a number instead; a function that expects a

number gets a string instead; or a function that expects an integer gets a
floating point number instead.

E-2

Series 30/40 BASIC Guide

60

70*

72

75

80*

81*

83*

85

87

STRING TOO LONG

KEYBOARD BUFFER
OVERFLOW

KEYBOARD INPUT
TIMEOUT

/0 RACKS DISABLED;
CAN'T SCAN

COM1 RX OVERFLOW

COM1TX TIMEOUT

COM1PARITY

COM1 INPUT TIMEOUT

COM1 TRANSMIT
OVERFLOW

ARRAY SIZE

A-STACK

BAD PROGRAM
CHECKSUM

String expression exceeds the maximum length assigned to the variable, or a
string operation resulted in an overflow of the string buffer. If the former, a
program can “truncate” the string; if the latter, you can break up asingle
expression into several multiple expressions where each yields an intermediate
result.

For example, if LEN(E$) > 128, then the expression

E$ = LEFTS(E$,LEN(E®)) yiddsthe error STRING TOO LONG because the
string buffer must hold E$ twice; once for the LEFT$ operator and once for the
nested LEN operator. This expression must be re-written using an
intermediate result, asin the following example: X = LEN(E$) : E$ =
LEFTS(ES$.X).

Operator pressed enough keysto fill up the keyboard buffer. This message
occurs only when COMO is opened with the IB parameter, and usually
indicates that the program fails to read the keyboard frequently enough.

Operator failed to pressakey in response to an INPUT or INPUTS statement
within the time period specified by the TD parameter in the OPEN statement
for COMO. Thiscan be a useful error to generate so as not to leave a program
suspended while waiting for operator input.

Program contains a SCAN command; this command is not supported on the
Series 30/40 Workstations.

Workstation received a character when the 255-character buffer was already
full; to avoid this error, try implementing XON/XOFF or RTS handshaking
(usethe RX or RH parameter in the OPEN command).

CTSinput did not come active or XON was not received within the time
period specified by the CS or TX parameter; this occurs when the other device
is not connected properly, not operating properly, or the program doesn't wait
long enough for the other device to come ready.

Parity error occurred during the reception of a character; this can happen
because of electrical noise or improper communication parameter settings.

Workstation did not receive a character in response to an INPUT or INPUTS$
statement within the time period specified by the TD parameter in the OPEN
statement for COM1. Thiscan be a useful error to generate so as not to leave a
program suspended while waiting for input.

User program attempted to print to COM1 when the buffer isfull. Thiscan
occur subsequent to COM1 TRANSMIT HANDSHAKE TIMEOUT if the CTS
input is not asserted.

In DIM statement, array size exceeds 254, string length exceeds 254, or
memory required exceeds memory available; otherwise, element number
exceeds number of elementsin array.

Too many levels of parentheses in an expression or PUSHes don’t match POPs
or CALLsthat push and pop; if the former, break up the expression into
smaller expressions that yield intermediate results.

Program is scrambled and will not run; indicates possible problem with
electrical noise scrambling the memory.

Error Codes

E-3

BAD SYNTAX
CAN’'T CONTINUE

CAN'T RESUME
C-STACK

EXTRA IGNORED

[-STACK

ILLEGAL DEFERRED

ILLEGAL DIRECT

NO DATA

NO SUCH PROGRAM

REDIMENSION

ROM WRITE

OuUT OF MEMORY

STOP

UNDEFINED LINE
NUMBER

Invalid command or statement, or variable name includes a reserved word.
CONT won't work if a program terminated normally or with an error; CONT
works only if a program terminates with a [Ctrl]-C.

RESUME won’t work unlessit’s at the end of an error-handling routine.
Mismatch between variable following NEXT and the variable following the
corresponding FOR; UNTIL, WHILE, NEXT, RETURN or RETI without
corresponding control statement; too many levels of nesting; or end of program
found at end of DO or FOR statement. Also, use the CLEAR command from
within a subroutine clears all stacks, so the RETURN statement at the end of
the subroutine will cause a C-STACK error.

INPUT received either string input that exceeded the maximum string length
or received more numbers than INPUT expected.

Expression istoo complex for BASIC to handle. Almost invariably indicates
that an expression contains too many levels of parentheses. The solution isto
re-write the expression to eliminate nesting, re-write it so that higher-
precedence operators come first, or break it up into two or three expressions
that return intermediate values.

Attempt to execute a command in the Run mode that executes only in the
Command mode, such as CONT.

Attempt to execute a command in the Command mode that executes only in
the Run mode, such as STOP or RESUME.

Attempt to READ found no data, either because the program contains no
DATA statements or because previous READs have already exhausted all the
DATA statements. This can occur if you re-start a program with a GOTO
instead of RUN, so if you want to do that, put a RESTORE before the first
READ.

Reference to a program that doesn’t exist; for example, RAM1 = RAM 2 when
RAM 2 doesn’'t exist or DEL RAM 3 when RAM 3 doesn’t exist.

Program containsa DIM or SDIM for an array variable that already exists
either because of a previous DIM or because of a previous use that created the
array by default. This can occur when re-starting a program with a GOTO
instead of a RUN, but there is no remedy except to avoid executing the extra
DIM or SDIM statements.

Attempt to write to alocation in Flash EPROM that is already written.
Program has grown too large during editing or renumbering or the program
has created too many variables during execution.

Program execution halted because of a STOP statement.

GOTO, GOSUB, ON ... GOTO, ON ... GOSUB, ON TIME, or ON ERROR
refersto aline number that doesn't exist in the program.

* Indicates an asynchronous error that can occur at any time during program execution, without regard to the statement
BASIC is current executing. When an asynchronous error occurs, the error number (ERR) isvalid but the error line

number (ERL) isirrelevant.

