
Series 30/40 BASIC Guide

DOC-IWS-280
Revision B
September 1996

Nematron Corporation
5840 Interface Drive
Ann Arbor, Michigan 48103
Phone: 734-214-2000
Fax: 734-994-8074

ii Series 30/40 BASIC Guide

Important Information

Note: This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are
designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the
interference at his own expense.

Electrical Shock Hazard! Do not operate the unit with its back cover removed.
There are hazardous voltages inside. Servicing of the equipment should only be
done by qualified and authorized personnel.

This publication is issued on condition that it is not copied, reprinted, or
disclosed to a third party, either wholly or in part, without the prior written
consent of Nematron Corporation.

Nematron Corporation assumes no liability or responsibility for the loss or
damage, direct or indirect, arising from the use of this product. Nematron
Corporation reserves the right to change this product’s specifications without
notice.

This document is based on information available at the time of its publication.
While efforts have been made to be accurate, the information contained in this
guide does not purport to cover all details or variations in hardware and software.
This guide may describe features which are not present in all hardware and
software systems.

Nematron and FloPro are registered trademarks, and NemaSoft, PowerVIEW,
Industrial Control Computer, Industrial Workstation, and AutoNet are
trademarks of the Nematron Corporation. All other brand or product names are
trademarks or registered trademarks of their respective companies.

Release Date Revision
July 1993 Original release
September 1996 Addition of IWS-40

©1993, 1996 Nematron Corporation, All Rights Reserved. Printed in U.S.A.

Contents

Chapter 1 Getting Started

Symbols.. 1-1
Hardware and Software Requirements .. 1-3

Chapter 2 Display and Keyboard

Display ... 2-1
Character Set .. 2-1
Contrast Adjustment ... 2-1

Keyboard .. 2-1
Keyboard Faults .. 2-1
Keyboard Inserts ... 2-1

Chapter 3 Hardware Installation

Chapter 4 Software Installation

Power-up Sequence... 4-1
Downloading Firmware .. 4-1
Required Equipment... 4-2

Downloading .. 4-2
Version Numbers.. 4-4

Chapter 5 On-Line Configuration

Accessing the On-Line Configuration Menu 5-1
Main Configuration Menu .. 5-1

Selecting a Menu Item .. 5-1
Selecting Parameters... 5-1
Changing Parameters.. 5-1
Exiting.. 5-1

Clock.. 5-2
Date Format.. 5-2
Date.. 5-2
Time ... 5-2

Keyboard/Display ... 5-2
Auto-Repeat.. 5-2
Repeat Delay... 5-2
Repeat Rate... 5-2
Line End Action ... 5-3
Screen End Action .. 5-3
Cursor... 5-3

Communications... 5-4
Baud Rate ... 5-4
Parity .. 5-4
Data Bits... 5-4
Stop Bits ... 5-4

iv Series 30/40 BASIC Guide

Transmit Handshake ...5-4
RTS Control..5-4
Receive Handshake..5-5
Convert Parity Error..5-5
Parity Error Char ..5-5

Utility ...5-6
Communications Test..5-6
Upload ..5-7

Chapter 6 Service

Changing the Fuse ..6-1
Memory Write Disable..6-2
Troubleshooting..6-3

Chapter 7 Concepts

Command/Run Modes ... 7-1
Console.. 7-1
Ports .. 7-1
Statements ... 7-2
Numbers and Constants ... 7-2
Variables ... 7-3

Scalar Variables ... 7-3
Array Variables.. 7-3
Memory Allocation .. 7-3
Variable Names.. 7-4
Floating point Variables ... 7-4
Integer Variables.. 7-4
String Variables ... 7-4
Built-in Variables... 7-4

Operators and Expressions... 7-4
Operators ... 7-4
Expressions .. 7-5
Relational Expressions ... 7-5

Memory Usage... 7-5

Chapter 8 How to Use BP Software

Starting up BP ..8-1
Starting up the Workstation ..8-2
Summary of BP Functions...8-3
Creating a Program...8-4

Line Editing ..8-4
Command Editing ...8-4

Sending a Program to the Workstation..8-5
Receiving a Program from the Workstation.......................................8-5
Configuring BP...8-6

Color Configuration ..8-6
Serial Port Configuration...8-7
Display Configuration ...8-7
Save and Restore Defaults ...8-7

Additional BP Functions ...8-7
DOS Gateway..8-7
Data Capture ...8-7
History Window ..8-7
Hex Display...8-8

Contents v

Keyboard Macros .. 8-8
Troubleshooting.. 8-9

Chapter 9 Application Suggestions

Special Keyboard Functions.. 9-1
Halting a Program; [Ctrl]-C .. 9-1
On-Line Configuration; [F3]... 9-1
Restore COM1 Defaults; [F4].. 9-2

Program Development Techniques ... 9-2
Storing Programs in Permanent Memory .. 9-3
Auto-Starting Programs.. 9-3
Program Protection... 9-3
Preserving Data During a Power Loss... 9-4
Printing to the Display.. 9-4
Time-Driven Functions... 9-4

Chapter 10 Commands and Statements

ABS ... 10-1
ASC ... 10-2
ATN... 10-3
BIT .. 10-4
CALL... 10-5
CBY... 10-6
CHR$ (right side) ... 10-7
CHR$ (left side).. 10-8
CLEAR .. 10-9
CLOCK.. 10-10
CLS.. 10-11
CONT .. 10-12
COPY... 10-13
COS ... 10-14
CR .. 10-15
CSRLIN ... 10-16
DATA .. 10-17
DATE$... 10-18
DBY... 10-19
DEL ... 10-20
DIM ... 10-22
DIR .. 10-24
DO . . . UNTIL ... 10-25
DO . . . WHILE .. 10-27
DUMP.. 10-28
END... 10-29
ERR and ERL... 10-30
EXP.. 10-31
FOR . . . NEXT .. 10-32
FREE ... 10-33
GOSUB . . . RETURN .. 10-34
GOTO .. 10-35
HEX$... 10-36
HVAL .. 10-37
IBY .. 10-38
IF . . . THEN . . . ELSE .. 10-39
IN# .. 10-40
INKEY$... 10-41

vi Series 30/40 BASIC Guide

INPUT..10-42
INPUT$..10-47
INSTR ..10-48
INT ..10-49
INV ..10-50
LD@...10-51
LEFT$..10-55
LEN..10-56
LET ..10-57
LIST ...10-58
LOCATE ..10-60
LOG ...10-61
MID$ (right side)..10-62
MID$ (left side) ..10-63
MTOP...10-64
NEW ..10-65
NOT ...10-66
ON ERROR GOTO...10-67
ON . . . GOSUB..10-69
ON . . . GOTO ..10-70
ON TIME = . . . GOSUB ..10-71
OPEN COM..10-72
PH0. and PH1. ..10-80
PI ..10-81
PLEN..10-82
POP ..10-83
POS ..10-84
PR# ..10-85
PRINT ..10-86
PRINT USING..10-88
PUSH..10-90
RAM...10-90
REACT...10-92
READ...10-93
REM...10-94
RENUM..10-95
RESTORE ..10-96
RESUME..10-97
RETI...10-98
RETURN ..10-99
RIGHT$.. 10-100
RND ... 10-101
ROM... 10-102
RUN ... 10-103
SDIM.. 10-104
SGN.. 10-105
SIN .. 10-106
SPC ..10-107
SQR.. 10-107
ST@ ... 10-108
STOP.. 10-109
STR$.. 10-110
TAB.. 10-111
TAN ... 10-112
TIME.. 10-113
TIME$.. 10-114
TROFF ... 10-115
TRON... 10-116

Contents vii

VAD... 10-116
VAL... 10-117
VARPTR.. 10-118
VERSION .. 10-119
XBY... 10-120

Chapter 11 Operators

Precedence..11-1
Addition (+) ...11-2
Subtraction or negation (–) ...11-3
Multiplication (*) ...11-4
Division (/) ...11-5
Exponentiation (^)..11-6
Equal (=) ..11-7
Not equal (<>)..11-8
Less than (<) ..11-9
Greater than (>).. 11-10
Less than or equal to (<=)... 11-11
Greater than or equal to (>=) .. 11-12

Chapter 12 Logic

Truth Tables... 12-1
AND... 12-2
OR .. 12-3
XOR... 12-4
INV...12-5
INV AND... 12-6
INV OR.. 12-7
INV XOR ... 12-8

Chapter 13 CALLs

CALL 12; clear to the end of the display... 13-2
CALL 13; clear to the end of the line.. 13-2
CALL 30; turn on COM1’s RTS line.. 13-3
CALL 33; turn off COM1’s RTS line ... 13-3
CALL 38; enter the on-line configuration menu 13-4
CALL 39; enter the monitor ... 13-4
CALL 40 and 41; return characters in COM1 buffer....................... 13-5
CALL 82; print variable list.. 13-6

Appendices

A. Speed-up Hints .. A-1
B. Differences between Series 30/40 BASIC and GW-BASIC..........B-1
C. Memory Map ... C-1
D. Reference... D-1

Command Summary .. D-1
Operators ... D-6
CALLs... D-7
Workstation Key Codes.. D-7
CTRL Characters Sent to Workstation D-8
Ports .. D-8

E. Error Codes...E-1

Chapter 1

Getting Started

This guide describes the details of the BASIC language in the Series 30/40
Workstations. To get the most from this guide, you should already be familiar
with the BASIC language.

Symbols

Certain symbols in this guide help make you aware of critical information, as
shown below:

This symbol emphasizes that hazardous voltages, currents,
temperatures, or other conditions which cause personal
injury exist in this equipment or may be associated with its
use.

This symbol appears when equipment damage may occur
if care is not taken.

Note A note gives information that pertains to a specific
firmware release or one form of the hardware only.

1-2 Series 30/40 BASIC Guide

The following table shows the meaning of various symbols used throughout this
guide. Words enclosed in square brackets usually represent keys on the keyboard
as shown in the first example below:

Symbol Refers to

[Enter] Key labeled “Enter” (or “Return”) on the keyboard.

UPPER CASE Words that you type exactly as shown.

[Filename] Name of a screen file entered by the user.

lower case An entry that varies based on your needs.

nnn Number that you enter .

var Variable name of any type, such as “A” or “A$.”

nvar Numeric variable such as “A” or “A%.”

svar String variable, such as A$.

const Constant number, such as “123.45” or “5.”

expr Any expression that returns a value, including simple
variables such as “A” as well as such expressions as
“A/B” or “A$ + B$.”

aexpr Any number, variable, or combination that returns a
numeric value in the range of a floating point number.

iexpr Any number, variable, or combination that returns a
numeric value in the range of an integer number.

rexpr Any number, variable, or combination that returns a 0 or
non-zero value; typically includes a relational operator
such as “<” or “>=.”

sexpr Any string or combination that returns a string.

{ } Braces indicate an optional entry.

Screens on your computer are enclosed in boxes as shown in the example below:

NEMATRON CORPORATION
Series 30/40 BASIC
 Version 5.50

READY – RAM 1
>

Workstation screens are enclosed in double boxes, as shown in the example
below:

Welcome to V5.50 B
Series 30/40 BASIC

This guide indicates something you are supposed to type by italicizing it: Type
This.

Getting Started 1-3

Hardware and Software Requirements

You need the following equipment to write programs for a Series 30/40
Workstation with BASIC:

• Series 30/40 Workstation

• PC-compatible with:

Minimum 640K of memory
Floppy disk drive
Hard disk drive with 1.5 megabytes of available space
Serial communications port (COM1)
Monochrome or color monitor
PC system software (DOS 2.0 or later)

• IWS-SETUP-BP-30

One 3 1/4" setup diskette. Contact the factory if you require the setup
program on a 5 1/4" diskette.
Cable to connect your PC's 9-pin serial port to your Series 30/40
Workstation’s COM1 port. If your PC has a 25-pin serial port, a
standard 9 to 25 pin adapter will allow you to use the download
cable.

Chapter 2

Display and Keyboard

This chapter describes how to control the Workstation’s display and how the
keyboard operates.

Display
The Series 30 Workstation displays two lines with 20 characters on each line of
a liquid crystal display (LCD) with LED backlighting. Because of the 100,000
hour half-life of the backlight, the Workstation has no “screen saver” function.

The Series 40 Workstation comes with a vacuum fluorescent display (VFD) with
two lines of 20 characters each.

Character Set The character set on both models includes the entire standard ASCII character
set, but is limited only to U.S. characters and eight programmable characters.

Contrast
Adjustment

(IWS-30 only)

To adjust the contrast of the display on the IWS-30, rotate the knob on the back
of the Workstation.

Keyboard

The keyboard on the Series 30/40 Workstation is a sealed-membrane type with
stainless steel domes that provide tactile feedback.

Keyboard Faults If the Workstation appears to ignore all key presses, the keyboard may be
faulty. If the Workstation senses any invalid combination of keys pressed
simultaneously, it accepts no further key presses until all keys are released.
This provides some protection against a stuck key.

Keyboard Inserts You can change the key and logo legends by replacing inserts that slide in
behind the keyboard. To replace the inserts, you must first remove the back
cover.

For a modest tooling charge and additional cost per unit, Nematron can provide
custom inserts to meet your needs. As an alternative, you can make your own
inserts according to the following instructions.

2-2 Series 30/40 BASIC Guide

Logo Insert You can install your own logo in place of Nematron’s logo. The drawing on
the to shows the insert, which you must cut as shown; the cross mark would
appear at the center of the window. The drawing on the bottom shows the
window, which indicates the maximum size you can print your logo.

Display and Keyboard 2-3

Top Row Insert The drawing on the top shows how to cut an insert for the top row of keys. The
cross marks indicate the center of each key’s legend. The drawing on the
bottom shows the window for each key, which indicates the maximum size you
can print your legends.

2-4 Series 30/40 BASIC Guide

Bottom Row Insert The drawing on the top shows how to cut an insert for the bottom row of keys.
The cross marks indicate the center of each key’s legend. The drawing on the
bottom shows the window for each key, which indicates the maximum size you
can print your legends.

Chapter 3

Hardware Installation

For information on installing and connecting the Series 30/40 units, refer to the
Series 30/40 Installation Guide (DOC-IWS-271; Rev. C), which is included with
the 30/40 Workstation.

Chapter 4

Software Installation

This chapter describes how to install the software included with IWS-SETUP-30/40 on your
hard disk drive and how to download firmware to your Workstation.

Power-Up Sequence

After you apply power, the Workstation checks for valid firmware memory. If the firmware is
valid, the unit displays its model number and performs a brief self-test that includes memory,
keyboard and display.

To speed up the display of the self-test, press [x]. At the end of the self-test, the unit begins
normal operation, which varies depending on the firmware.

If firmware memory is empty or invalid, the Workstation performs an exhaustive test of the
memory. During this test, which lasts about one minute, the Workstation displays the
following:

Now testing Flash.
Please wait . . .

At the conclusion of the test, the Workstation displays the following message (if the firmware
appears faulty, the message starts with “Invalid” instead of “Empty”):

Empty firmware;
you must download.

Downloading Firmware

This section describes how to change the firmware in your Series 30/40 Industrial
Workstation. You may have to change your firmware either to change its type or to upgrade
the current version.

Three types of firmware are available

l PLC Workstation (IWS-SETUP-30)

l Industrial Computer with BASIC (IWS-SETUP-BP-30)

l Industrial Terminal (all Series 30/40 models leave the factory with this firmware
installed), which is included with the IWS-SETUP-30 kit.

Because the unit stores its firmware in “flash” memory, each hardware model supports all three
types of firmware. To change firmware, you simply plug in a PC-compatible and transmit a
firmware file.

4-2 Series 30/40 BASIC Guide

When a new Workstation leaves the Nematron factory, it has the Industrial Terminal firmware
already downloaded. If you want to program your unit in BASIC, then you must download
new firmware.

Required Equipment

In order to download firmware, you must have the following equipment and materials
available:

l One 3 1/2” diskette included in the IWS-SETUP-30/40 package.

l PC-compatible with at least 256K RAM, one serial port, one hard disk drive, and one
floppy disk drive.

l Cable to connect your PC to the Workstation; this is part number CBL-C2, and is
included in the IWS-SETUP-30 package.

l Series 30/40 Industrial Workstation.

Downloading The following instructions describe how to download new firmware to your
Series 30/40 Industrial Workstation. Before you begin, you should ensure
that you have the necessary equipment available.

1. If your new Workstation displays the following screen after completing its power-up
self-test, then proceed to step 2:

First-time power-up!
Download or hit key.

If your Workstation does not display this screen, then you must hold down the [↑] and
[↓] keys simultaneously while powering up the Workstation.

Note Unlike other hidden keyboard commands that the system
can accept at any time during the power-up self-test, the
system looks for the keyboard command to enter the
download mode only at the moment of power-up. In other
words, you must hold down [↑] and [↓] even before you
apply power.

This immediately brings up the following message:

Ready to accept
firmware download.

2. If you have already loaded the IWS-SETUP-BP-30 software onto your hard drive, then
skip to step 4. Otherwise, create a directory on your hard drive for the software and
change the current path to that directory.

For example, if you want the directory to be “IWS” then you would type MD IWS and
press [Enter] to create the directory. Then you would type CD IWS and press [Enter] to
change the current path to that directory.

Software Installation 4-3

3. Insert the diskette labeled IWS-SETUP-BP-30 into your PC’s floppy disk drive and type
Copy a:*.* d:\IWS (d = disk drive where you created the subdirectory\IWS) and press
[Enter]. This copies the files to your hard drive.

4. Connect the download cable between the 9-pin COM1 or COM2 port on your PC and
the COM1 port on your Workstation.

5. Type DOWNLOAD followed by the firmware file you want to download to your PC.
Listed below are your filename choices:

Filename Firmware Description

H0.ROM Allen-Bradley PLC-5 and PLC-2 (RS-232); GE Micro
Allen-Bradley Micrologix 1000 and SLC-5/03 and 5/04 (RS-232)

H1.ROM Allen-Bradley PLC-2 (programming port)
H2.ROM Allen-Bradley 100/150 and Modbus
H3.ROM Allen-Bradley SLC 500-RS-485 (available separately)
H4.ROM GE Fanuc Series Ninety; Omron SP Series
H5.ROM GE Fanuc Series 1, 3, 5, 6; Texas Instruments 305 and 435; Koyo

DL330, DL340, DL430, and DL440; Square D 100 to 700
H6.ROM Omron; Simatic/TI 500/505 Series
H7.ROM Siemens 90U to 115U; Westinghouse 700-1250
H8.ROM Mitsubishi A, F, and FX Series
H9.ROM Hitachi H Series; IDEC Micro 3
HA.ROM IDEC Micro-1, FA-1, FA-2, and FA-3;

Toshiba M, EX, and T2
HB.ROM BASIC
HC.ROM Telemecanique
HTM.ROM Terminal

For example, to set up your unit for BASIC, type DOWNLOAD HB.

To download using COM2 on your PC, type -2 before the filename; for example,
DOWNLOAD -2 HB.

As of this guide's publication, the most recent release of DOWNLOAD was version 1.81. The
version number is automatically displayed when you run the program.

4-4 Series 30/40 BASIC Guide

Version Numbers

As of this guide’s publication, the most recent release of BP was version 3.36, and the most
recent release of firmware was version 5.50. If you call Nematron for assistance, you should be
able to provide the version numbers you are using. As of this guide's publication, the most
recent release of DOWNLOAD was version 1.81. The version number is automatically
displayed when you run the program.

To find the version of BP software you have, just look at the top line of the screen:

======================== BP Version 3.36 ====================

To find the version of firmware you have, cycle power and watch the display during the power-
up self-test:

BASIC V5.50 B
Model IWS-30/40

Chapter 5

On-Line Configuration

This chapter describes how to access and use the built-in configuration program.
The configuration program allows you to set up the operation of your Workstation. For
example, you can set up the communications parameters for your serial port.

Accessing the On-Line Configuration Menu

To access the Configuration Menu, hold down [F1] and [↵] simultaneously
during the power-up self-test or press [F3] at any time when BASIC is in
the command mode (i.e., no program is running).

Main Configuration Menu

When you enter the on-line configuration program, the Workstation displays the following
screen:

F1-Clock F2-Kbd/Dsp
F3-Comm F4-Utility

Selecting a Menu Item To select an item from a menu, simply press the corresponding function
key.

Selecting Parameters To scroll from selection to selection without changing anything, press [↑]
or [↓]. If you make a change and then press [↑] or [↓], the unit does not
record the change and instead goes to the previous or next selection.

Changing Parameters To change a parameter, you must press [+] or [–] to choose the desired
parameter, and then press [↵]; the system then displays the next selection.

Exiting Pressing [x] at any time returns to the previous menu (and the Workstation
ignores any change on the current screen). To exit the configuration
program entirely, press [x].

5-2 Series 30/40 BASIC Guide

Clock

Date Format U.S. (MM/DD/YY), Int’l (DD.MM.YY)
Selects the format the Workstation uses to print the date. The U.S. format
is MM/DD/YY, where the month comes first; for example, June 24, 1994 is
06/24/94. The Int’l format is DD.MM.YY, where the day comes first; for
example, June 24, 1994 is 24.06.94

Date Selects the current date; note that the Workstation rejects months and days
that are invalid. Because the Workstation has no battery, it loses the date
every time you turn off power.

Time Selects the current time; note that the Workstation uses a 24-hour clock, so
in the afternoon, you must enter the current time plus twelve. Because the
Workstation has no battery, it loses the time every time you turn off power.
And while you have power applied, the Workstation’s clock is accurate
only to within a few minutes every day.

Keyboard/Display

Auto-Repeat Enabled, Disabled

Selects whether holding down a key causes it to repeat continually (after a
brief delay). We recommend you leave this Disabled.

Leave the auto-repeat option Disabled if you have assigned
any keys to a machine control function. Please consider
whether a stuck key could indirectly harm personnel or
equipment.

Repeat Delay 1 to 255

This is the amount of time your operator must hold down a key before it
repeats. Note that the resolution of this parameter is 50 milliseconds, which
means that a value of 20 equals one second. If you must enable the auto-
repeat option, we recommend a repeat delay of 20.

Repeat Rate 1 to 255

This is the amount of time the unit waits between repeats while a key is held
down. The resolution of this parameter is 50 milliseconds, so a value of 2
means the unit repeats every 100 milliseconds, or 10 times each second. If you
must enable the auto-repeat option, we recommend a repeat rate of 1 or 2.

On-Line Configuration 5-3

Line End Action None, Auto-CR, Auto-CRLF

This selection allows you to choose where the cursor moves after it prints to
the last column on a line. Following is how these selections control the
cursor’s movement:

None The cursor remains at the end of the current line.

Auto-CR The cursor moves to the first column of the current line.

Auto-CRLF If the cursor is not on the bottom line, it moves to the first column of the
bottom line; if the cursor is on the bottom line, the cursor movement
depends on your choice for the Screen End Action selection.

When the cursor is sent backwards, the same concepts apply. For example, when going
backwards from the first column, Auto-CR moves the cursor to the last column of the current
line, while Auto-CRLF moves the cursor to the last column of the previous line. Of course,
None leaves the cursor in the first column. We recommend that you set this parameter to
Auto-CRLF.

Screen End Action None, Wrap, Scroll

If you choose Auto-CRLF for the Line End Action selection described
previously, this selection allows you to choose where the cursor moves after
it prints to the last column on the bottom line. Listed below is how each
selection affects the cursor’s movement:

None Cursor remains at the end of the bottom line.

Wrap Cursor moves to the first column of the top line.

Scroll The Workstation moves the bottom line to the top and clears the bottom line.
Then it moves the cursor to the first column of the bottom line.

When the cursor is sent backwards, the same concepts apply. For example, when going
backwards from the first column of the top line, Wrap moves the cursor to the last column
of the bottom line, while Scroll moves the top line down and places the cursor at the last
column of the top line (which is now blank). Of course, None leaves the cursor in the first
column. We recommend that you set this parameter to Scroll.

Cursor None, Block, Underscore

Selects the cursor type. We recommend that you choose the Block cursor.

5-4 Series 30/40 BASIC Guide

Communications

Baud Rate 110, 30/400, 600, 1200, 2400, 4800, 9600, 19200
Selects the speed at which this port transmits and receives. We
recommend 9600, but in any event you must ensure that the device
connected to this port operates at the same speed.

Parity None, Odd, Even
Selects whether the Workstation sends and receives an extra bit that helps
guard against lost bits. Selecting None disables this feature, while Even
specifies that of the bits received, an even number of them must be high
(and conversely for Odd). We recommend you enable parity if the data
communicated is critical. In any event, this must match the setting of the
device connected to this port.

Data Bits 7, 8
Selects the number of data bits in each byte transmitted. This must match
the setting of the device connected to this port. The combination of 7 data
bits, no parity, and 1 stop bits is invalid. In that instance, we recommend
you select 2 stop bits instead.

Stop Bits 1, 2
Selects the number of stop bits transmitted after each byte. This must
match or exceed the setting of the device connected to this port. In other
words, selecting 2 always works, but selecting 1 usually works. The
combination of 7 data bits, no parity, and 1 stop bits is invalid. In that
instance, we recommend you select 2 stop bits instead.

Transmit Handshake None, CTS, XON/XOFF

Selects the type of “handshaking” that the Workstation respects when
transmitting. Selecting None tells the Workstation to transmit
immediately. This works fine if the other device’s receiver is always ready
to receive. Selecting CTS tells the Workstation to transmit only if its CTS
input is asserted. Choose this if the other device has an output that it
asserts when its receiver is available. This is often called “hardware
handshaking.”
Selecting XON/XOFF tells the Workstation to stop transmitting when it
receives an XOFF (ASCII code 19, or [Ctrl]-S) and to resume when it
receives an XON (ASCII code 17, or [Ctrl]-Q). This is often called
“software handshaking” and is typically used only for Terminals.

RTS Control Always On, On During Xmit, On to Receive, On at Xmit

Selects the function of the RTS handshaking line. In most RS-232 applications, you
should select Always On and connect RTS to the CTS input of the Workstation or the other
device.
For virtually all RS-422 and RS-485 applications, you should select On During Xmit. The
Workstation enables its RS-422/RS-485 transmitter only when RTS is on, which is crucial
when there are multiple transmitters on the same pair of wires.
Choosing On to Receive is the same as choosing RTS for the Receive Handshake selection
that follows.

On-Line Configuration 5-5

Receive Handshake None, RTS, XON/XOFF

Selects the type of “handshaking” that the Workstation asserts when
receiving. This is especially useful to prevent your host from overflowing
the Workstation’s receive buffer, which can cause weird display problems.
If the other device supports “hardware handshaking” on its transmitter, which usually
means that it doesn’t transmit unless its CTS input is asserted, you can select RTS and
connect the Workstation’s RTS output to the other device’s CTS input. (This is the
same as choosing On to Receive for the RTS Control selection previously described.)

If the other device supports “software handshaking,” you can select XON/XOFF so that
the Workstation matches the other device.

Convert Parity Error Enabled, Disabled

This selects whether the Workstation automatically translates characters
received with the wrong parity into some other character.
Typically, you would assign a character such as “~” that is normally not displayed, so
that the operator knows that there was a parity error.

Parity Error Char 0 to 255

Selects the ASCII code of the character returned in place of characters
received with incorrect parity. You should read the description above
under “Convert Parity Error” for more information.

5-6 Series 30/40 BASIC Guide

Utility

Selecting the Utility function from the main configuration menu brings up the following menu:

 Utility Menu
F1-Test F2-Upload

Test This section describes how to perform a “loopback” test on the Workstation’s
COM1 port so that you can check for a hardware failure. This test is useful
either to confirm or rule out that communication problems are related to
hardware problems.

Before you begin this test, you must plug a “loopback” connector into the COM1 port. This
connector is a female DB25 connector that you have modified according to one of the following
diagrams:

RS-232
Series 30/40 COM1

25-pin Female; RS-232 loopback

TXD 2
RXD 3
RTS 4
CTS 5

RS-422
Series 30/40 COM1

25-pin Female; RS-422 loopback

TXD + 14
RXD + 16
TXD – 15
RXD – 17

RTS 4
CTS 5

To perform this test, you must first gain access to the on-line configuration menu by cycling
power and pressing [F1] and [↵] simultaneously during the power-up self-test. To run the test,
you first press [F4] and then [F1].

After you start the test, the Workstation sends test data out through the transmitter and checks
for identical data coming back through its receiver. If everything works properly, the
Workstation displays the following screen:

Test Port:
COM1: Pass

On-Line Configuration 5-7

If the COM1 port does not work properly, the Workstation displays one of the following
messages:

Break Indicates that a “break” character was received; probably indicates a failed
transmitter.

Compare Indicates that the Workstation received different characters than expected; the
probable cause is a hardware failure.

Framing Indicates that the Workstation received a character with a framing error; the
probable cause is a hardware failure.

No CTS Indicates that the CTS input appears not to be asserted; this is caused either
because the jumper between RTS and CTS is missing from the loopback
connector or because the RTS output or CTS input has failed.

Overflow Indicates that the Workstation received too many characters; the probable
cause is a hardware failure.

Overrun Indicates that the Workstation was unable to process characters as fast as they
arrived; the probable cause is a hardware failure.

Parity Indicates that the Workstation received a character with a parity error; the
probable cause is a hardware failure.

Timeout Indicates that the Workstation received no characters at all; this is caused
either because the jumper between RXD and TXD is missing from the
loopback connector or because the transmitter or receiver has failed.

Upload This allows you to enable uploading of new firmware to the Workstation.
After selecting this option, you can follow the instructions on page 5-2 to
download firmware.

Ready to accept
firmware download.

Chapter 6

Service

This chapter describes service procedures and helps you troubleshoot some of the simple
hardware problems that can occur. The material in this chapter is also contained in DOC-
IWS-271, Series 30/40 Installation Guide.

Changing the Fuse

The Series 30/40 Workstation requires one 1/2 Amp Slo-Blo Pico™ fuse (Littelfuse® part
number 473.500); Nematron offers fuses under part number COS-FUS-30 which contains ten
fuses.

The fuse holder is accessible only by removing the back cover and printed circuit board.
Follow these steps to replace the fuse:

1. Disconnect power to the unit. Disconnect any communications cable plugged into
COM1. Remove the unit from the panel.

2. Correct the condition (usually a power supply overload) that caused the fuse to blow.

3. Remove the four screws that hold on the back cover and slip off the back cover.

4. Locate the ribbon of plastic that connects the keyboard to the printed circuit board,
unlatch the black cap of the keyboard connector, and remove the keyboard tail.
The following two illustrations show the keyboard connector in the latched and
unlatched positions:

6-2 Series 30/40 BASIC Guide

5. Remove the four standoffs that hold on the printed circuit board and remove it as well.

6. Locate fuse F1 near the power supply terminal block. Using a continuity tester, check
the fuse to make sure it’s the problem.

7. Using needle-nose pliers, grab the center of the fuse and pull straight up. Install a
new fuse.

8. Install the printed circuit board back on the posts; be sure that the two spacers between
the display and the printed circuit board remain in place.

9. Insert the keyboard tail into the keyboard connector, and latch the connector.

10. Install the standoffs, replace the back cover, and replace the screws.

Memory Write Disable

After you download your firmware and application file, you can disable any further changes to
the firmware by moving a jumper inside your unit.

To move this jumper, follow these instructions:

1. Disconnect power to the unit. Disconnect any communications cable plugged into
COM1. Remove the unit from the panel.

2. Remove the four screws that hold on the back cover and slip off the back cover.

3. The jumper is located on the component side of the printed circuit board near the LCD
display module. The jumper is labeled “E2” and has two positions: “RO” and “RW”.
The “RO” position is “Read-Only”; moving the jumper to that position protects the
memory from any intentional or accidental changes. The “RW” position is
“Read/Write”; moving the jumper to that position allows you to download new
firmware or a new application.

4. Replace the back cover and the screws.

Service 6-3

Troubleshooting

Virtually all apparent problems are caused by improper communications connections or
inadequate grounding.

Problem noted Possible cause(s) Remedy

No response to some keypresses Loose keyboard connector; faulty
keyboard

Unlatch keyboard connector, ensure keyboard
tail is fully seated, and re-latch connector;
return unit to factory for new keyboard.

Firmware download reports that
Flash is write-protected, empty
or invalid

Write-protection jumper is in “RO”
position; using old version of
DOWNLOAD; faulty firmware

Move write-protection jumper to “RW”
position; use V1.6 or later of DOWNLOAD;
or return unit to factory for new firmware.

Communications problems Bad cable; port failure Verify cable; use proper wire for RS-422;
check serial port with our loopback test as
described in Chapter 5.

Unit resets randomly or exhibits
other intermittent problems

Loose or shorted power cable; short
in communications cable

Check, repair and replace cable(s).

Workstation not connected to earth Connect unit to earth ground.

Voltage potential between earth
grounds of Workstation and other
devices connected to its
communications ports

Connect all devices to the same earth ground.

Loose integrated circuit inside Open unit, remove board and press chip into
socket.

Faulty Workstation power supply Return unit to factory.

Low line power voltage Raise voltage.

Faulty Workstation Return unit to factory.

Chapter 7

Concepts

Command/Run Modes

BASIC operates in two modes, the Command, or direct mode, and the Run, or deferred mode.
Some statements can only execute when BASIC is in the Command mode; others can execute
only in the Run mode, while the remainder can execute in both modes.

In Command mode, BASIC immediately executes one or more statements after you press [Enter].
Examples of statements that execute only in Command mode are NEW and DEL.

In Run mode, BASIC executes numbered program statements. Examples of statements that can
execute only in RUN mode are STOP and RESUME.

Console

Your IBM-compatible PC acts as a programming “console” when connected to the Workstation’s
serial port. Through the console, you can enter commands and edit your program.

The default Workstation serial port that connects to your console is COM1; you can assign a
different serial port as the console port with the REACT C command. For example, REACT C2
assigns port 2 as the console. See the description of the REACT command for more information.

Ports

You must connect your Workstation's COM1 port to your PC when you’re programming, and to
some other device when your program is running. This can be awkward, so we recommend that
you consider using an IWS-117 or IWS-127 for program development.

When communicating, the display and keyboard are also considered to be a port. The following
table summarizes the port names and numbers:

Name Number Description
COM0 0 Keypad and display
COM1 1 COM1 serial port

7-2 Series 30/40 BASIC Guide

Statements

A BASIC program consists of numbered lines. Each line ends with a carriage return and
contains one or more statements. Each statement on the same line must be separated by a colon
(:).
The following rules apply to BASIC statements:

• Every line in a program must have a statement line number ranging between 0 and
65535. A good programming practice is to number line numbers by 10 (i.e. 10, 20, 30,
etc.), because BASIC doesn’t care if there are gaps between line numbers.

• A statement number can appear only once in a program.

• You do not have to enter statements in numerical order, because BASIC automatically
stores them in ascending order.

• A statement may contain no more than 250 characters.

• BASIC ignores blanks (spaces) except between quotation marks.

• A single line can contain more than one statement; a colon (:) separates each statement.

10 PRINT ABS(-45) : REM THIS IS A PROGRAM STATEMENT

Remark (non-executable)
Statement separator (colon)

Operator

Statement line number
Command (as part of statement)

Numbers and Constants

There are two types of numbers that BASIC can handle: integers and floating point numbers.
Integers range from -65,535 to 65,535, while floating point numbers range from ±1E -127 to
±.99999999 E + 127.

Floating point numbers contain eight significant digits; BASIC continually truncates results that
return more than eight significant digits. BASIC can accept and display numbers in three
formats:

Format Example
Decimal 34.98435
Hexadecimal 0A6EH
Scientific notation 1.2745 E+3

Hex numbers must begin with a digit between 0 and 9; to enter a hex number that starts with a
letter (A through F), you must precede the number with a 0. For example, you must enter the hex
number A00H as 0A00H. When a BASIC operation requires an integer, BASIC either rejects
any number that exceeds the range and returns an error or truncates any fractional portion so it
fits the integer format.

The word “constant” simply refers to a group of digits or a string of characters. For example,
123 is a constant, while A is a variable. Constants can range in value from ±1E -127 to
±.99999999 E + 127.

Concepts 7-3

Variables

Variables are named locations that hold changeable values. Different types of variables exist for
different types of values; for example, small integers, fractions or large numbers, and strings of
characters. Also, a variable can hold one value (“scalar variable”) or many values (“array
variables”).

Each type of value that a variable can hold is listed in the table below:

Variable Type Format Example
Floating point Variable name A
Integer Variable name followed by “%” A%
String Variable name followed by “$” A$

The first three variable formats identify different variables, even if the preceding letters are the
same. For example, the variable names A, A%, and A$ all refer to different variables.

Array variables are different from scalar variables of the same name; for example, A(), A,
A%(), A%, A$() and A$ all refer to different variables!

Scalar Variables Simple variables that represent a single value are called “scalar” variables. For
example, the variable “A” is a scalar variable that represents a single number.

Array Variables BASIC supports single-dimensioned variable “arrays,” where one variable
name refers to several separate variables, each identified by a number that
follows the name. The format of an array variable is “A(n)” where “n” is a
number that refers to a specific variable in the array. Chapter 11’s description
of the DIM statement contains additional information about array variables.

Memory
Allocation

BASIC allocates RAM memory space to variables in a “static” manner. This
means that each time the program refers to a new variable, BASIC allocates 8
bytes of memory to that variable (strings require more; see the description of
VARPTR in Chapter 11).

A BASIC program cannot de-allocate memory allocated to specific variables. For example, if
BASIC executes a statement like A = 4, you cannot tell BASIC later that the variable A no longer
exists. The only way to clear the memory allocated to variables is to execute a CLEAR
statement, which eliminates all variables.

Note BASIC evaluates references to scalar variables faster than
array variables. To improve your execution time, use scalar
variables for intermediate results, then assign the final
result to an array variable.

7-4 Series 30/40 BASIC Guide

Variable Names A variable is a named data location that a BASIC program can examine and
change. A variable name must start with a letter, but it may include both
numbers and letters. Only the first two characters of the variable name are
significant. For example, “A” is a valid variable name, as is “A1234;”
however, BASIC considers “A1234” to be the same as “A1.”

Variable names cannot include any words that BASIC reserves for its own use.
Among the reserved words are all of the statements listed in Chapter 11. For
example, TOP is not a valid variable name because it contains the word TO,
which BASIC uses in a FOR statement. As another example, STOP is not a
valid variable name because it is a BASIC statement.

Floating point
Variables

Unless otherwise indicated, variables refer to floating point numbers. For
example, A, A1, BAD, and STARTING are all valid floating point variable
names. Floating point numbers range in value from ±1E -127 to ±.99999999 E
+ 127, but with a resolution of only 8 digits. For example, when BASIC
multiplies 1.2345678 by 11, it truncates the result of 13.5802458 to 13.580245.

Integer Variables Integer variable names end with a % character; for example, A% is an integer
variable, not a floating point variable. Integer numbers range in value from -
65,535 to 65,535. (Integers in most BASICs have a range of only -32,768 to
32,767.)

Integers offer a speed advantage; most operations involving integers execute as
much as 10% faster than the same operations using floating point numbers.
Unlike most BASICs, Series 30 BASIC does not offer any savings in memory
consumption by using integer variables instead of floating point.

String Variables String variable names end with a $ character; for example, A$ is a string
variable. String variables have a default length of 10 characters; your program
can set up a different default string length for all strings as well as specify a
length of up to 254 characters for any specific string. Consult the description
of SDIM in Chapter 11 for more information.

Unlike most BASICs, Series 30/40 BASIC allocates memory to strings in a
“static” manner. Once you create the string, either with the SDIM statement or
simply by referring to it, you cannot change its maximum length.

Built-in Variables Built-in variables contain values that BASIC assigns itself, depending on the
circumstances. For example, ERR contains the number of the last error that
occurred. Note that all characters in the variable name are significant for built-
in variables. In other words, ER is not the same variable as ERR.

Operators and Expressions

This section describes how to combine multiple mathematical operations into a single expression.

Operators Operators manipulate one or two operands and return a result. Typical dyadic
(two-operand) operators include add (+), subtract (-), multiply (*), and divide
(/). Typical unary (one-operand) operators are exponentiation (^), SIN (sine),
COS (cosine), and ABS (absolute).

Concepts 7-5

Expressions An expression is a mathematical formula that includes a combination of
operators, constants, and variables. Expressions can be simple or complex. A
“stand-alone” variable such as “A” is an expression in its simplest form. A
complex expression might be SIN(A)*(SIN(A)+COS(A))*COS(A)/2.

Relational
Expressions

Relational expressions compare two expressions and return a true/false result.
The numeric value of true is 65,535; the numeric value of false is 0. A
relational expression can be any arithmetic expression, although typical
relational expressions use the relational operators shown below:

= Equal
<> Not equal
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

The relational operators also work with strings; string1 is considered “less than” string2 if it is
either shorter than string1 or if the first character that doesn’t match has a lower ASCII value.
For example, “TO” is less than “TAP” and less than “TS.”

Memory Usage

Page C-13 of the Appendix contains a drawing that shows how BASIC uses the Workstation’s
memory. You may want to refer to this drawing as you read the following text.

While you're creating a new program, BASIC stores your program at the bottom of available
RAM; as your program increases in size, BASIC uses RAM memory at increasing addresses.
While you’re editing your program, the entire RAM is available.

During program execution, BASIC stores normal variables starting at the top of available RAM
(as specified by MTOP, whose default value is the highest RAM address available); as you add
variables, BASIC stores those variables at decreasing addresses in memory. BASIC stores array
variables starting at the end of your program and works up.

BASIC can run out of memory during editing if your program expands beyond the available
RAM. If this happens, then your program is certainly too big, because BASIC allocates memory
for variables only while your program is executing. BASIC can also run out of memory while
your program is running, if it detects that normal variable memory has overlapped your program
or array variable memory.

In either case, BASIC issues a MEMORY FULL error and you must slim down your application.

After you have completed your application, you must save it in the Workstation's permanent
memory by copying it to ROM. When the Workstation powers up, it copies the program to RAM
and runs out of RAM. Please see the description of the ROM command in Chapter 11 for
complete information.

Commands and Statements 10-51

LD@
Retrieves data from external memory and places it in a
variable.

LD@ iexpr, var { ,var2 . . .}

Where iexpr is the starting address of external memory that contains data, and var is the
variable to receive the data. Additional variables that receive their data from consecutive
memory locations are optional.

Discussion In combination with the ST@ command, LD@ provides the ability to save
data in the unit’s memory. ST@ writes variables to memory, while LD@
reads variables from memory.

You can use LD@ to retrieve one or more variables of any type, including
floating point numbers, integers, and strings. You must be careful, of course,
to retrieve variables in the same sequence in which you saved them, or strange
things will happen.

The iexpr parameter is the starting address of the data for var. If there are
more variables following var, then they receive their data from consecutive
memory locations.

Reserving memory In order to save data in memory, you must first find the necessary space. This
space comes from unused Flash EPROM space above your program. To
calculate the first available address, you should use the PLEN command to get
the length of your program and add it to A010h; the result is the first available
address. The maximum address you can use is 0FFFFh.

Although each location in Flash memory can be written to individually, it
must be entirely erased before a location that has already been written can be
changed. And because BASIC stores itself and your program in the same
Flash, you cannot erase the Flash without downloading firmware and your
program again.

A location that has not been written has the value 255 (0FFh); you can change
that value to any other value, but the only way to change it back to 255 is to
erase the entire Flash.

10-52 Series 30/40 BASIC Guide

Memory usage Floating point and integer numbers use six bytes of memory. For example, if
your program contains the statement “LD@ 0F000h,A,B%”, then variable A is
retrieved from F000h to F005h, while B% is retrieved from F006h to F00Bh.

ST@ stores strings with their actual length plus 1 byte to hold the length. For
example, if your program stores the string “ABC” at location F000h, the length
byte is at F000h and the characters “ABC” are stored between F001h and
F003h. (ST@ uses only enough memory to store the actual string, not its
maximum length.)

Variable Type Memory Usage
Floating point 6 bytes
Integer 6 bytes
String Actual length plus 1

For more information about how BASIC stores variables, consult the
description of the VARPTR statement later in this chapter.

Special VAD variable BASIC has a special variable called VAD that always points one byte past the
last address that the latest LD@ or ST@ used. This is handy to avoid a lot of
“bookkeeping” for programs that store lots of strings, whose lengths can vary.

Examples The example program on the following page saves two variables, S1 and S2, in
Flash memory. When the program starts, it finds the two variables in Flash
and loads them. If the operator then chooses to change them, the program
accepts new values and stores them in memory.

Line 130 establishes address 0F000h as the starting point for permanent variable memory.
This address relies on your program’s length remaining less than 20,000 bytes; you can find
out your program’s length by printing PLEN after you have finished writing your program.
With roughly 4,000 bytes of memory available between 0F000h and 0FFFFh, and with 12 bytes
needed to store the two permanent variables, you can store changes to these variables about 300
times before running out of memory.

Line 140 calls a subroutine starting at line 540 that checks whether the six bytes of memory
starting at address VAD are erased. If they are, then line 150 initializes the permanent
variables to zero and stores them in permanent memory.

If the six bytes of memory at VAD are not erased, then line 160 loads in the variables that are
already stored there. Line 170 calls the subroutine at line 540 again to see if the next six bytes
are erased. If they are, then the program continues at line 180 because it has already found the
last instance in memory of the two permanent variables.

However, if the following bytes are not erased, then the program reloads the variables from the
next higher 12 bytes of memory. This process continues until the program has found the most
recent instance of the two permanent variables.

Commands and Statements 10-53

Lines 180 through 260 allow the operator to choose whether to change the permanent variables
or continue with the program. Lines 280 through 380 allow the operator to change the
variables; before allowing the operator to proceed, however, line 290 tests VAD to see if there
is enough space remaining in permanent memory to store another instance of the variables.

Lines 330 through 370 accept new values for the permanent variables, relying on the
subroutine starting at line 440. This subroutine displays the current value and allows the
operator to press [+] to increase it (line 500), [–] to decrease it (line 510), [↵] to enter the new
value (line 490) and [x] to cancel the entry and restore the old value (line 520).

Line 380 concludes by storing the two new values in permanent memory.

10-54 Series 30/40 BASIC Guide

100 REM Demonstration program of variable
saving program
110 REM Saves variables S1 and S2 in Flash
memory
120 OPEN "COM0:IB,CE,LF,CL,SC,AR,RD1"
130 VAD = 0F000H
140 GOSUB 540 : IF N = 1 THEN 160
150 S1 = 0 : S2 = 0 : ST@ VAD ,S1,S2 : GOTO 130
160 LD@ VAD ,S1,S2
170 GOSUB 540 : IF N = 1 THEN 160
180 CLS
190 PRINT #0,"[F1] - New variables";
200 PRINT #0,"[F2] - Continue";
210 A = ASC(INPUT$(1,#0))
220 IF A = 0F2H THEN 390
230 IF A = 0F1H THEN 270
240 CLS : PRINT #0,"Wrong answer!"
250 PRINT #0,"Try again.";
260 FOR X = 1 TO 500 : NEXT : GOTO 180
270 REM Allow operator to enter new variables
280 CLS
290 IF VAD < 0FFF0H THEN 330/40
300 PRINT #0,"No more memory!";
310 FOR X = 1 TO 500 : NEXT
320 GOTO 390
330 PRINT #0,"S1 =",S1;
340 N = S1 : GOSUB 440 : S1 = N
350 CLS
360 PRINT #0,"S2 =",S2;
370 N = S2 : GOSUB 440 : S2 = N
380 ST@ VAD ,S1,S2
390 REM Run program normally
400 CLS
410 PRINT #0,"S1 =",S1
420 PRINT #0,"S2 =",S2;
430 END
440 REM Accept new value
450 N1 = N
460 LOCATE 2,1
470 PRINT #0,"New value =",N1; : CALL 13
480 A = ASC(INPUT$(1,#0))
490 IF A = 13 THEN N = N1 : RETURN
500 IF A = 43 THEN N1 = N1 + 1
510 IF A = 45 AND N1 > 0 THEN N1 = N1 - 1
520 IF A = 127 THEN RETURN
530 GOTO 460
540 REM Test for erased value at VAD
550 N = 0 : T = VAD : FOR X = 0 TO 5
560 IF XBY(VAD + X) <> 255 THEN N = 1
570 NEXT : VAD = T : RETURN

Commands and Statements 10-55

LEFT$
Returns the left part of a string.

LEFT$(sexpr,iexpr)

Where sexpr is any string expression and iexpr is the length of the string to return.

Discussion If iexpr is greater than the number of characters in the string, the entire string
will be returned. If iexpr is zero, a null string (length 0) is returned.

Examples 10 A$ = "Bettendorf"
20 B$ = LEFT$(A$,3)
30 PRINT B$

>RUN
Bet

READY – RAM 1
>

>PRINT LEFT$("Bettendorf",4)
Bett

>

10-56 Series 30/40 BASIC Guide

LEN
Returns the number of characters in a string.

LEN(sexpr)

Where sexpr is any valid string expression.

Discussion LEN counts the number of characters in a string, including printable,
unprintable and blank characters.

Examples 10 SDIM A$(20) : REM Dimension string
20 A$ = "Eldridge, Iowa"
30 L = LEN(A$)
40 PRINT "Length of string is",L,"characters"
50 PRINT A$

>RUN
Length of string is 14 characters
Eldridge, Iowa

READY – RAM 1
>

READY – RAM 1
>C$="hello"

>PRINT C$, LEN(C$)
hello 5

>

Commands and Statements 10-57

LET
Assigns the value of an expression to a variable.

{LET} var = expr

Where var is the name of any type of variable that is to be assigned the value of the following
expr.

Discussion As shown in the syntax, LET is an optional word; the equal sign alone is
sufficient for assigning an expression to a variable name.

Examples 10 LET D = 12
20 PRINT D

>RUN
12

10 LET A$ = "Oak "
20 LET B$ = "Street"
30 PRINT A$+B$

>RUN
Oak Street

10-58 Series 30/40 BASIC Guide

LIST
Lists all or part of a program.

Command mode only

LIST {# port#,}{line#1} {,} {line#2}

Where port# is an optional output port and line# is any valid line number in the program.

Discussion You can use the LIST command to list all or part of your program on the screen of
your PC or of the Workstation (although the latter is not very useful).

LIST List all program lines
LIST n List line “n” only
LIST n, List from line “n” to the end of the program
LIST ,n List from the beginning to line “n”
LIST m,n List from line “m” to line “n”

Examples >LIST
10 SDIM A$(20) : REM Dimension string
20 A$ = "Ann Arbor, Michigan"
30 L = LEN(A$)
40 PRINT "Length of string is",L,"characters"
50 PRINT A$

READY – RAM 1
>

>LIST 10
10 SDIM A$(20) : REM Dimension string

READY – RAM 1
>

>LIST ,30
10 SDIM A$(20) : REM Dimension string
20 A$ = "Ann Arbor, Michigan"
30 L = LEN(A$)

READY – RAM 1
>

Commands and Statements 10-59

>LIST 20,40
20 A$ = "Ann Arbor, Michigan"
30 L = LEN(A$)
40 PRINT "Length of string is",L,"characters"

READY – RAM 1
>

>LIST 20,
20 A$ = "Ann Arbor, Michigan"
30 L = LEN(A$)
40 PRINT "Length of string is",L,"characters"
50 PRINT A$

READY – RAM 1
>

10-60 Series 30/40 BASIC Guide

LOCATE
Positions the cursor on the display.

LOCATE {row#}, {column#}, {cursor}

Where row# is the line (1 - 2), column# is the display column (1 - 20), and cursor is the style
of cursor displayed (0 = none; 1 = flashing box; and 2 = underline).

Discussion The LOCATE command positions the cursor on the display and optionally
selects the kind of cursor displayed. Any of the parameters may be omitted.

Examples The following example places a block cursor in row 2, column 4.

10 LOCATE 2,4,1 : REM Row 2, column 4, block cursor
>RUN

READY - RAM 1
>

The following example places the cursor in column 3, and leaves the row the same.

10 LOCATE ,3

>RUN

READY - RAM 1
>

Commands and Statements 10-61

LOG
Returns the natural logarithm.

LOG(expr)

Where expr is any number or numeric expression greater than zero.

Discussion The natural logarithm is the logarithm to the base e (2.718281828). LOG and
EXP are inverse functions. Therefore the LOG of EXP(x) is x.

To calculate the logarithm in any other base, use the formula logb(x) = log(x)/log(b).

Examples >PRINT LOG(34.67)

 3.545875

>

10 A = EXP(14)
20 X = LOG(A)
30 PRINT X

>RUN
14

READY – RAM 1
>

10 INPUT "Enter number",A
20 X = LOG(A) : REM Calculate natural log of A
30 Z = X/LOG(10) : Convert to base 10 log
40 PRINT A,X,Z

>RUN
Enter number 34.67
34.67 3.545875 1.5399547

READY – RAM 1
>

10-62 Series 30/40 BASIC Guide

MID$ (right side)
Returns a string from within another string.

MID$(sexpr1, iexpr1, iexpr2)

Where sexpr1 is the string variable; iexpr1 is the new string’s starting point within the current
string; and iexpr2 is the length of the new string.

Discussion On the right side of an equals sign, MID$ returns a string from within another.
The string returned starts at the nth character of sexpr, where n = iexpr1, and
continues for iexpr2 characters. If iexpr1 exceeds the length of sexpr, the
resulting string is null (length = 0).

Examples 10 A$ = "Bettendorf"
20 B$ = MID$(A$,4,4)
30 PRINT B$

>RUN
tend

READY – RAM 1
>

Commands and Statements 10-63

MID$ (left side)
Places a string within another string.

MID$(svar, iexpr1 {,iexpr2})

Where svar is a string variable, iexpr1 is an offset into the string and iexpr2 is an optional
length.

Discussion On the left side of an equals sign, MID$ copies the string expression on the
right of the equals sign into the string starting at a specified offset, iexpr1, and
continuing for an optionally specified number of characters, iexpr2. If iexpr1
or iexpr2 equals zero, then svar doesn’t change.

Examples >A$ = "Bettendorf" : MID$(A$,7,2) = "BAD" :
PRINT A$
BettenBArf

>MID$(A$,9) = "rt" : PRINT A$
BettenBArt

>

10-64 Series 30/40 BASIC Guide

MTOP
Returns or sets the highest memory address available.

MTOP = iexpr

Where iexpr is the highest memory address (plus 1) that is available to your BASIC program.

Discussion MTOP sets or returns the highest memory address (plus 1) available to your
BASIC program. The usual value of MTOP is 32767. If you try to set MTOP
above the highest RAM location physically available, then BASIC issues a
“BAD ARGUMENT ERROR.”

The only reason to reduce MTOP is to use the space in order to save variables in a more
efficient means than BASIC uses. For example, if you needed to save 5,000 integers, BASIC
uses six bytes for each one and would need 30/40,000 bytes. But you could use the XBY()
command to store integers in only two bytes, which means your total memory requirement
would be 10,000 bytes.

Note When your program sets MTOP (using the format
MTOP = x), BASIC clears any variables already declared.
In other words, your program must set MTOP before doing
anything else.

Examples >PRINT MTOP
32767

>

Commands and Statements 10-65

NEW
Deletes the program currently in memory and clears all
variables.

Command mode only

NEW

Discussion NEW erases the program and clears all variables. You normally use it just
before you download or start writing a new program.

Examples READY – RAM 1
>NEW

>

10-66 Series 30/40 BASIC Guide

NOT
Returns a 16-bit 1’s complement.

NOT(iexpr)

Where iexpr is a valid integer between 0 and 65535 (0FFFFh).

Discussion NOT inverts each bit of an integer.

Examples 10 INPUT "Enter number ",A
20 B = NOT(A)
30 C = 65535 - (B)
40 PRINT B,C

>RUN
Enter number 34
65501 34

READY – RAM 1
>

Commands and Statements 10-67

ON ERROR GOTO
Enables error handling routine.

Run mode only

ON ERROR GOTO line#

Where line# is a line number in the program to which BASIC transfers control when it finds
an error. (Setting line# to 0 disables error handling.)

Discussion The ON ERROR GOTO statement tells BASIC to go to a routine if an error
occurs. When an error occurs, whether BASIC is in the Run mode or the
Command mode, BASIC executes the routine starting at line number line#.

When BASIC enters the error routine, it sets up the special variables ERR and ERL to hold the
error number and line number of the error; in any other situation, the status of these variables
is invalid. In order to resume program execution, the error handler must exit with a RESUME
statement. See the description of RESUME for more information.

If the error handling routine terminates program execution (with the STOP, END, or ON
ERROR GOTO 0 statement), BASIC immediately prints the error. If an error occurs within
the error handler, BASIC terminates program execution and reports the error.

See the Appendix for a list of error codes.

Some communications errors can occur asynchronously, which means that ERL may not be
valid. For example, if a receive buffer overflows, ERR will be correct but ERL will be the
number of the line that the Workstation was executing when the overflow occurred. For an
example, see the note under the description of the ERR and ERL statements earlier in this
chapter. See the error message listing in the Appendix for a list of the asynchronous
communications errors.

BASIC does not report asynchronous communications errors that occur during the error-
handling routine. Your routine must RESUME before your program can detect that type of
error.

During debugging, you may want to set up your error-handling routine to print a status
message to the console and then immediately terminate program execution. In this case, most
of your status message may be lost, because BASIC clears its communications buffers before
printing an error message. In other words, BASIC erases any part of the message that still
remains in the buffer. To ensure that the buffer empties, you may want to add a FOR – NEXT
loop to idle a few seconds before ending the program.

You must be careful that your error-handler RESUMEs without disrupting control loops such
as GOSUB – RETURN or FOR – NEXT. For example, if your error handler RESUMES
outside a FOR – NEXT loop, the system's internal control stack will be left out of whack.

10-68 Series 30/40 BASIC Guide

Examples 10 ON ERROR GOTO 100
20 INPUT A
30 B = 100/A
35 PRINT "100 divided by";A;" equals";B
40 GOTO 20
100 IF ERR <> 10 THEN END
110 PRINT "You have attempted to divide by zero!"
115 A=1
120 PRINT "We have substituted 1 for your input"
130 RESUME 30

>RUN
?34
100 divided by 34 equals 2.9411765
?0
You have attempted to divide by zero!
We have substituted a 1 for your input
100 divided by 1 equals 100
?

Commands and Statements 10-69

ON . . . GOSUB
Calls one of a list of subroutines.

Run mode only

ON expr GOSUB line#, line#. . . ,line#

Where expr is an expression that BASIC automatically rounds to an integer; BASIC passes
control to the nth line#, where n = expr + 1.

Discussion The value of the expression determines which line number in the list is the
starting line of the subroutine that BASIC calls. For example, if the expression
is 0, BASIC calls the first subroutine in the list. BASIC ignores any fractional
part of the expression. The subroutine must end with a RETURN, at which
point BASIC passes control to the next statement following the ON GOSUB
statement.

Examples 10 INPUT"Enter number ",A
20 ON A GOSUB 100, 200, 300, 400
30 PRINT "DONE"
40 GOTO 10
100 PRINT"The answer to A was 0"
110 RETURN
200 PRINT"The answer to A was 1"
210 RETURN
30 PRINT"The answer to A was 2"
310 RETURN
400 PRINT"The answer to A was 3"
410 RETURN

>RUN
Enter number 2.5
The answer to A was 2
DONE

READY – RAM 1
>

10-70 Series 30/40 BASIC Guide

ON . . . GOTO
Branches to one of a list of lines.

Run mode only

ON expr GOTO line#,line#. . . ,line#

Where expr is an expression that BASIC rounds to an integer; BASIC passes control to the nth
line#, where n = expr + 1.

Discussion The value of the expression determines which line number in the list to which
BASIC transfers control. For example, if the expression is 0, BASIC goes to
the first line number in the list. BASIC ignores any fractional part of the
expression.
.

Examples 10 INPUT "Enter number ",A
20 IF A >= 4 THEN 40
30 ON A GOTO 100, 200, 30/400, 400
40 PRINT "You blew it, Jack"
50 END
100 PRINT "The answer to A was 0"
110 GOTO 10
200 PRINT "The answer to A was 1"
210 GOTO 10
30 PRINT "The answer to A was 2"
310 GOTO 10
400 PRINT "The answer to A was 3"
410 GOTO 10

>RUN
Enter number 2.5
The answer to A was 2
Enter number 4
You blew it, Jack

READY – RAM 1
>

Commands and Statements 10-71

ON TIME = . . . GOSUB
Sets up time-based interrupt handler.

Run mode only

ON TIME = expr GOSUB line#

Where expr is an integer setpoint for the timer; line# is the line number of the subroutine that
handles timer interrupts.

Discussion The ON TIME statement tells BASIC to call a subroutine after a specified
period of time. This “interrupt” capability makes it easy for you to set up
events to occur on a regular schedule. After BASIC executes an ON TIME
statement, it must then execute a CLOCK1 statement in order to reset the timer
and enable the ON TIME interrupt.

After executing the CLOCK1 statement, BASIC continually monitors the status of the timer,
which is stored in a special variable called TIME. When TIME is equal to or greater than
expr, BASIC calls the subroutine beginning at line#. The best resolution possible from the
timer is 0.005 seconds, although you must plan on a “latency” or delay in handling the
interrupt until BASIC completes the statement it is currently executing. This latency could be
a very long time if BASIC happens to be in the middle of an INPUT statement when the timer
times out.

Note If you want to use the ON TIME capability and still have
the capability of using the INPUT statement, you should
write a subroutine that emulates the INPUT statement. You
can use INKEY$ #0 or INPUT$(0,#0) to test for characters
received from the keypad and build response strings with
some additional decoding logic
.

If you want BASIC to execute the timer subroutine on a regular schedule, your
subroutine would have to reset TIME either at the beginning or the end of the
routine, depending on your requirements, with another CLOCK1 statement.
If you want your timer subroutine to cancel further timer interrupts, your
subroutine should contain a CLOCK0 statement. The subroutine can also
change the timer setpoint with another ON TIME statement. In any event,
your timer subroutine must end with a RETI statement, not a RETURN
statement.

Examples This demonstration calls the timer subroutine at 1.105 second intervals:

10 PRINT USING "#####.###"
20 ON TIME = 1.105 GOSUB 100
30 CLOCK1 : REM Reset timer and enable interrupts
40 PRINT TIME ; CR ;
50 FOR Z = 1 TO 30 : NEXT
60 GOTO 40
100 PRINT TIME
110 CLOCK 1 : RETI

10-72 Series 30/40 BASIC Guide

This demonstration calls the subroutine every second with virtually no accumulation of error:

10 PRINT USING "#####.###"
20 T = 1 : ON TIME = T GOSUB 100
30 CLOCK 1 : REM Reset timer and enable interrupts
40 PRINT TIME ; CR ;
50 FOR Z = 1 TO 30 : NEXT
60 GOTO 40
100 PRINT TIME
110 T = T + 1 : IF T >= 65536 THEN CLOCK 1
120 ON TIME = T GOSUB 100 : RETI

OPEN COM
Declares a port’s communication parameters.

OPEN “port: {,param1} {,param2} . . . {,paramN} ” {AS #alias]

Where port is the hardware port designation followed by any combination and sequence of
optional parameters as specified in the table below, followed by an optional designation of an
alias. A full discussion of each parameter follows the table.

Because the data between quotation marks is actually a string, you can use a string variable.
For example, OPEN A$ is a valid statement, provided A$ is in the correct format.

The display and keyboard are also considered to be a port; the following table summarizes the
port names and numbers:

Name Number Description
COM0 0 Keypad and display
COM1 1 COM1 serial port

There are three “default” columns in the following table because there are three situations
under which default conditions can occur:

Initial Default Refers to the status of the parameter the first time you power up.

OPEN Default Refers to the status of the parameter if you omit it. For example,
omitting the “TD” parameter sets up the port as if you entered
“TD100”; the only way to disable the TD parameter is to use “TD0”
in your OPEN statement.

Param Default Refers to the default value of the parameter if you omit the optional
number that follows the letters.

 Caution There are some combinations of parameters that could
 cause unpredictable behavior. Within the same OPEN
 statement, do not use CS with TX; in other words, don’t
 mix hardware handshaking and software handshaking.
 Some parameters are mutually exclusive; you can select
 only one of RS, RH, or RO; WA or SC; and CR or CL.

Commands and Statements 10-73

Para-
meter

Valid
Port Description Valid Values

Initial
Default

OPEN
Default

Param
Default

Port all “COM0” = keypad/display
“COM1” = first serial port

0 – 1

Alias all Software port number; all program
statements refer to this port by its alias, not
by its actual hardware port number.

0 – 5 Hard-
ware
port #

Rate 1 Baud rate (communications speed) 110, 300, 600,1200, 2400,
4800, 9600, 19200

9600 9600

Parity 1 No, even, or odd parity N,E,O N N

Data 1 Data size (if you set COM1 parameters to
7,N,1 or 7,N,2, you must set the other
device to 7,N,2)

7,8 8 8

Stop 1 Stop bits 1,2 1 1

IB all Enable buffered communications IB

RS 1 Assert RTS during transmit

CSx 1 Wait for CTS before transmitting 1 to 255; 50 msec
resolution; 0 = disabled

100

RX 1 Generate XON/XOFF handshake on
receive; set time to wait before generating
error

1 to 255; 50 msec
resolution; 0 = disabled

100

TXx all Respect XON/XOFF handshake on
transmit and set time to wait for XON

1 to 255; 50 msec
resolution; 0 = disabled

TX100 100

TDx all Set time-out when waiting for input (for the
INPUT and INPUT$ statements)

0 to 255; 50 msec
resolution; 0 = disabled

TD100 TD100 100

ED all Disable “echo” on INPUT

LF all Print line feed after carriage return LF

PSx 1 Translate parity errors to character of
ASCII code “x”

0 to 255 7Eh
(“~”)

LLx all Prevent lines from exceeding x; to disable,
set x = 0

0 to 255 LL0 LL0 0

CE all Allow [Ctrl]-C received on this port to
cause a “break”

CE

RH 1 Assert RTS when receive buffer empty

RN 1 Never assert RTS

RO 1 Assert RTS at the start of transmitting (and
leave asserted when finished)

The following parameters control only the Workstation’s keypad and display, and are therefore valid only for COM0:

SC 0 Enable scrolling on display SC

WA 0 Enable display to “wrap around” from last
character to first

CR 0 Enable automatic carriage return at end of
line on display

CL 0 Enable automatic carriage return/line feed
at end of line on display

CL

IC 0 Enable IBM PC ASCII code emulation

ARx 0 Enable keyboard auto-repeat and delay x *
50 msec to first repeat

0 to 255; 50 msec
resolution

AR10 10

RDx 0 Enable keyboard auto-repeat and delay x *
50 msec between repeats

0 to 255; 50 msec
resolution

RD2 2

10-74 Series 30/40 BASIC Guide

Note The CS and TD communications errors can occur
asynchronously, which means that ERL may not be valid.
For example, if a receive buffer overflows, ERR will be
correct but ERL will be the number of the line that the
Workstation was executing when the overflow occurred.
For an example, see the note under the description of the
ERR and ERL statements earlier in this chapter.

Alias The alias is an optional parameter that allows the software to refer to the port
by a different number. For example, OPEN “COM1:” AS #2 sets up COM1 as
port number 2. All further references to port 2, such as PR#2, IN#2, PRINT #2
and INPUT #2, refer to COM1.

The alias capability is not very useful for the Series 30/40 Workstation, because it has only one
communications port. We suggest that you omit using the alias.

AR; Auto-Repeat
Enable

This parameter enables the auto-repeat capability on the keypad, which allows
the operator to hold a key down instead of pressing it repeatedly. Optionally
following this parameter is the delay between pressing the key and the first
repetition. The resolution of the delay time is 50 milliseconds.

For example, the parameter AR10 enables the auto-repeat function and configures the
Workstation to start repeating after 500 milliseconds (50 milliseconds * 10). The RD
parameter sets the speed of subsequent repeats; you can change the time between repeats from
the default value of 100 milliseconds.

Warning You should not enable the auto-repeat function if there are
any keys that cause your machinery to perform a potentially
hazardous control operation.

CE; [Ctrl]-C
Enable

The CE parameter enables the Workstation to react to an ASCII character code
of 3 as an interrupt. On most computers, you can generate this code by holding
down the [Ctrl] key while pressing the letter “C”; on the Workstation’s keypad,
you can generate this code by holding down [F1] and [↵] at the same time.

BASIC handles a [Ctrl]-C interrupt as an error: it either terminates program execution or goes
to the routine specified by an ON ERROR statement.

CL; Enable
CRLF

The CL parameter affects only the operation of the Workstation’s display; if
you include the CL parameter when opening COM0, then BASIC
automatically moves the cursor to the first position of the next line after it
prints a character in the last column.

If the cursor is already on the bottom row of the display, then the action of the screen depends
on the WA and SC parameters. If the WA parameter is included, the cursor moves to the top
line; if the SC parameter is included, BASIC moves the bottom line to the top, clears the
bottom line, and leaves the cursor on the bottom line.

Commands and Statements 10-75

CR; Enable CR The CR parameter affects only the operation of the Workstation’s display; if
you include the CR parameter when opening COM0, then BASIC
automatically moves the cursor to the first position of the current line after it
prints a character in the last column.

CS; Wait for CTS If you specify the CS parameter, then the Workstation requires the port’s CTS
input to be asserted before transmitting. This is a type of “hardware
handshaking” where you connect a control line from another device that
indicates “ready to receive” to the “Clear To Send” input of the port.

This capability is useful when the port is transmitting to a device that cannot
accept data at full speed. If the device has a hardware handshaking capability
for its receiver, then you can wire its output to the port’s CTS input.

When your program tries to transmit, the Workstation tests the CTS input; if CTS is not
asserted, the Workstation starts a timer and continues to test CTS. If CTS fails to be asserted
within the time limit, then BASIC issues a timeout error.

Optionally following the CS parameter is the setpoint for the timer; the resolution of this timer
is 50 milliseconds. If you omit the timer setpoint, BASIC uses the default value of 100, which
is 5 seconds. If you specify a setpoint of 0, then BASIC waits forever for CTS and never
generates an error.

Data You can specify the number of bits in each data byte as 7 or 8; the default
value is 8. You must select the data size to match the data size of the device
you connect to the port. If you have a choice, we recommend you set the
device to a data size of 8 bits.

Note If you set COM1 to 7 data bits and no parity, then you must set
the stop bits of the device connected to COM1 to 2, regardless
of the number of stop bits you set for COM1.

ED; Echo
Disable

The ED parameter indicates that the Workstation should not “echo” characters
received on an INPUT statement.

Normally, the Workstation re-transmits every character to the current output port that it
receives in response to an INPUT statement. This is very nice when receiving input from a
person, but can be a problem when the port is receiving input from another intelligent device.

As an example, suppose the port is receiving data from a motion control system. In a typical
exchange, the port may send a command to the motion controller to send back its status. The
Workstation would then use an INPUT statement to receive this status information from the
port.

With echoing enabled, the Workstation would receive the status information and send it back
out to the motion controller (or whatever the current output device is). With echoing disabled,
the Workstation would simply receive the status information.

10-76 Series 30/40 BASIC Guide

IB; Enable
Buffers

The IB parameter indicates that the Workstation should send and receive
characters using 255-character buffers instead of 1-character buffers. The
differences in operation are summarized in the table below:

Opened with IB Opened without IB
Receive The Workstation can hold up to 255

characters in its buffer for eventual
exchange with a BASIC program.
When the buffer is full, the unit loses
additional characters and BASIC
generates an overflow error.

The Workstation can receive only one
character at a time. If the program fails
to take a character (using an INPUT,
INPUT$, or INKEY$ statement) before
a second arrives, the unit loses the
second; BASIC generates no error.

Transmit The program can place up to 255
characters in a buffer (using the PRINT
statement); the Workstation transmits
from the buffer while continuing to
execute the program.

If the program tries to PRINT when the
buffer is already full, the Workstation's
response depends on the status of the
port. If the port is actively transmitting,
then program execution stops until the
buffer is sufficiently empty for the
remaining characters.

However, if handshaking has made the
port inactive, BASIC returns a BUFFER
FULL error.

If the port is actively transmitting,
program execution halts while the
Workstation transmits each character to
be PRINTed.

However, if handshaking has made the
port inactive, BASIC returns a BUFFER
FULL error.

Buffered communications are useful when the port is connected to another
device that can transmit to the port at any time, because the port receives the
characters into its buffer even if your program is not immediately ready to
receive them. The Workstation also transmits via a buffer, which means that
the user program does not have to wait while the port transmits.

You can use a special CALL to retrieve the current status of a buffer. After the
CALL, your program must POP the status of the buffer into a variable (for
example, CALL 40 : POP A returns A equal to the number of characters
remaining in the receive buffer of the first port):

CALL Function
40 #1 receive
41 #1 transmit
In many applications, buffered communications can be a problem. For
example, if the port is connected to a device that “echoes,” then that device
sends back to the port every character it receives. With no buffers, however,
the port loses those characters, except perhaps the first character, which the
user program must discard.

When you enable buffered communications on COM0, the Workstation can
accept up to 255 keypresses before its buffer overflows; without buffers, the
Workstation remembers only the first keypress.

Commands and Statements 10-77

IC; IBM-
Compatible

Inclusion of this parameter when opening COM0 causes the Workstation to
display characters using the same ASCII codes as the IBM PC’s “multilingual”
code page, which is code page 850.

The Workstation’s display supports only a few of the foreign language characters, so the IC
parameter is not particularly helpful.

LF; Line Feed
Enable

The LF parameter indicates that the Workstation should send a “line feed”
character after every “carriage return” character.

After the first power-up, this parameter comes up enabled; in an OPEN
statement, however, the default is disabled. In order to enable this capability in
an OPEN statement, you must include the LF code.

The LF parameter is useful only when the port is transmitting to a relatively “dumb” device
like a terminal. Many intelligent devices accept a carriage return as a terminating character
and reject the line feed as an error.

LL; Set Line
Length

You can specify the maximum length of a line with the LL parameter followed
by the line length. When BASIC transmits (PRINTs) a character to that
maximum position, it automatically transmits a carriage return. To disable this
feature, you should simply omit this parameter. The LL parameter is primarily
useful when transmitting to a printer.

Parity You can select N for no parity, E for even parity, or O for odd parity. You
must choose a parity selection that matches the device connected to the port. If
you select even or odd parity and the port receives a character with the wrong
parity, it generates an error.

If you have a choice, we recommend you select E or O, but then you’ll probably need a routine
to handle any parity errors.

Port Every OPEN command must contain a designation for the hardware port you
are opening. The previous table lists the valid hardware ports.

PS; Select Parity
Character

The PS parameter specifies the ASCII code of the character that the
Workstation substitutes for any characters it receives with a parity error. In
other words, the Workstation can translate a parity error into another character
instead of reporting the error.

For example, the parameter PS126 causes the Workstation to substitute the character “~” in
place of any characters it receives with an error in parity.

Rate You can specify a baud rate for the serial ports; the previous table lists the baud
rates that the Workstation supports.

RD; Set Repeat
Rate

The RD parameter enables the keypad’s auto-repeat capability and sets the time
between the second and subsequent repeats. The resolution of the time delay is
50 milliseconds.

You should see the description of the AR parameter for more information about
the auto-repeat capability.

10-78 Series 30/40 BASIC Guide

RH; Receive
Handshake

Enable

The RH parameter enables “hardware handshaking” on the port’s receiver,
which is useful when your program is unable to receive from another device at
full speed.

The RH parameter causes the port to assert its RTS output whenever its receive
buffer is less than 3/4 full. If you connect that RTS output to the CTS input of
another device, the other device will transmit only when the Workstation is
ready to receive.

As a practical matter, when you use the RH parameter you should also select buffered
communications with the IB parameter.

RN; RTS Never
On

The RN parameter causes the port to leave its RTS output off. This parameter
allows you to use CALL 30/40 effectively, because any other choice for RTS
handshaking renders CALL 30/40 ineffective.

RO; RTS On at
Start

The RO parameter causes the port to assert its RTS output at the start of
transmitting and to leave RTS asserted indefinitely. You can use CALL 30/40
to turn off RTS later.

RS; RTS On
During Transmit

The RS parameter causes the port to assert RTS only when it has characters to
transmit. If the OPEN statement omits the RH, RO, and RS parameters, then
RTS remains asserted all the time.

You must include the RS parameter when you are using the port in an RS-422/485 application
because RTS also enables the transmitter itself. When RTS is not asserted, the transmitter
turns off, which allows another transmitter to communicate on the same wires.

RX; XON/XOFF
on Receive

The RX parameter enables “software handshaking” using the XON/XOFF
([Ctrl]-S/[Ctrl]-Q) protocol when receiving.

When the Workstation’s receive buffer becomes 75% full, the Workstation
transmits an “XOFF” character to the transmitting device, which should stop
sending. When the Workstation’s receive buffer is emptied to less than 50%
full, the Workstation sends an “XON” character to the transmitting device to
re-start communications.

Your program should not enable RX if the other device does not support XON/XOFF, or the
Workstation may operate in an unexpected manner.

As a practical matter, when you use the RX parameter you should also select buffered
communications with the IB parameter.

SC; Scroll
Enable

The SC parameter enables the Workstation’s display to scroll when printing
past the last character on the screen or before the first character. In most
applications, you should include the CL parameter as well.

Stop You can specify the number of stop bits that the port transmits after each data
byte as 1 or 2; the default value is 1. You must select the data size to match the
data size of the device you connect to the port. If you have a choice, we
recommend you set the device’s stop bits to 1. When you set the number of
data bits for COM1 to 7 and set its parity to none, then you must set the
number of stop bits for COM1 to 2, because COM1 doesn’t support the
combination 7,N,1.

TD; Set Input
Delay

When you open a port with the TD parameter, BASIC starts a 5-second timer
at the beginning of an INPUT or INPUT$ statement and generates an error if
no input occurs during the time period.

Commands and Statements 10-79

You can optionally specify a different timer setpoint following TD. The unit of measure is 50
milliseconds; for example, “TD10” tells the Workstation to wait for input no longer than 500
milliseconds (0.5 second) before issuing an error message.

This capability is useful to detect a fault without leaving the program “hung” while waiting for
input. If a time delay is enabled, then the Workstation can handle a “time-out” error with an
error-handling routine accessed by an ON ERROR statement.

To disable the timer, just enter a setpoint of 0; for example: TD0.

TX; XON/XOFF
for Transmit

The TX parameter configures the port for “software handshaking” using the
XON/XOFF ([Ctrl]-S/[Ctrl]-Q) protocol when transmitting. After receiving an
XOFF, the Workstation starts a 5-second timer; if it times out before the
Workstation receives an XON, the Workstation generates an error.

You can optionally specify a different timer setpoint following TX. The unit of measure is 50
milliseconds; for example, “TX10” tells the Workstation to wait for XON no longer than 500
milliseconds (0.5 second) before issuing an error message.

Your program should disable the TX capability if the transmitting device does not support the
XON/XOFF protocol. This is especially important if the transmitting device is sending
“binary” data where an XON or XOFF character could be part of the data stream.

WA; Wrap
Enable

When you OPEN COM0 with the WA parameter, the Workstation “wraps
around” to the first position on the screen after it prints to the last position. In
most applications, you should include the CL parameter as well.

Examples 10 OPEN "COM0:IB,CE,LF,CL,SC"
20 OPEN "COM1:IB,CE,LF,TX0"

>RUN

READY – RAM 1
>

10-80 Series 30/40 BASIC Guide

PH0. and PH1.
Prints numbers in hexadecimal format.

PH0. {#port#,} {expr} {, expr} . . .

PH0. {#port#,} {expr} {; expr} . . .

PH1. {#port#,} {expr} {, expr} . . .

PH1. {#port#,} {expr} {; expr} . . .

Where port# is an optional port number to print to and expr is an expression of any type to
print.

Discussion The PH0. and PH1. statements operate just like PRINT, except that they print
all numbers in hexadecimal format instead of floating point format. Consult
the description of PRINT for details.

The PH1. statement prints hex numbers in 4-digit format followed by the letter
H. The PH0. statement does not print leading zeroes unless the number is less
than 10h.

Examples >A = 34 : PH0.A : PH1.A
22H
0022H

>A = 100 : PH0.A : PH1.A
64H
0064H

>A = 255 : PH0.A : PH1.A
FFH
00FFH

>A = 256 : PH0.A : PH1.A
100H
0100H

>

>PH0.(66)
42H

>PH1.(66)
0042H

>PH0.(1000)
3E8H

>PH1.(1000)
03E8H

>

Commands and Statements 10-81

PI
Equals π (3.1415926).

PI

Discussion PI is useful in many mathematical relations, such as the area of a circle, (A =
πr2). You can use PI as the constant in any formula requiring the value for (π).

You may wonder why PI equals 3.1415926 when it is actually closer to
3.1415927. The reason is that the SIN, COS and TAN functions are more
accurate if the equation PI = PI/2 + PI/2 holds true.

Examples 10 INPUT "Enter radius of circle ",R
20 A = PI*(R^2)
30 PRINT "The area of the circle is ",A

>RUN
Enter radius of circle 2
The area of the circle is 12.56637

READY – RAM 1
>

10-82 Series 30/40 BASIC Guide

PLEN
Returns the length of your program.

PLEN

Discussion PLEN (Program Length) returns the length of your program in number of
bytes.

Examples 10 INPUT A$
20 A = LEN(A$)
30 PRINT A
40 PRINT PLEN

>RUN
?Circle tap
10
34

READY – RAM 1
>

Commands and Statements 10-83

POP
Equates a variable to the number at the top of the argument
stack.

POP var

Where var is equated to the number popped from the stack.

Discussion POP sets var to the number at the top of the argument stack. See the description
of PUSH for more information about the stack.
Some built-in CALLs return a result on the argument stack that your program
must remove with the POP command. If there is no data on the argument stack,
then the Workstation issues an A_STACK error.

Examples 10 CALL 40 : POP S
20 PRINT "Port #1 receive buffer size =”, S

>RUN
Port #1 receive buffer size = 0

READY – RAM 1
>

10-84 Series 30/40 BASIC Guide

POS
Returns the column number of the screen display’s cursor.

POS

Discussion The POS statement returns the column number occupied by the cursor on the
display. The column number varies between 1 and 20.

POS is a companion statement to CSRLIN, which returns the current line
number of the cursor, which varies between 1 and 2.

Examples The following program continuously updates the time on the display
independently of the rest of the program. Line 100 saves the current cursor
position so that line 120 can restore it later.

10 CLS : PR# 0
20 ON TIME = 1 GOSUB 100 : CLOCK 1
30 FOR I = 1 to 99999
40 PRINT USING "#####";I;CR;
50 NEXT
60 GOTO 30/40
100 RS = CSRLIN : CS = POS
110 LOCATE 2,5 : PRINT TIME$;
120 LOCATE RS,CS
130 CLOCK 1 : RETI

Commands and Statements 10-85

PR#
Switches output to specified port.

PR# iexpr

Where iexpr is a port number between 0 and 4.

Discussion PR# directs all output from PRINT statements to a specified port, although a
PRINT statement can contain a port selection that temporarily overrides the
PR# port selection.

The display and keyboard are also considered to be a port; the following table summarizes the
port names and numbers:

Name Number Description
COM0 0 Keypad and display
COM1 1 COM1 serial port

Examples 10 CLS
20 PR#0: REM Select Workstation’s display for
printing
30 PRINT "This is the Workstation’s display"
40 PR#1: PRINT "This is on the computer screen"

>RUN
This is on the computer screen

READY – RAM 1>

This is the Workstat
ion’s display

10-86 Series 30/40 BASIC Guide

PRINT
Prints to an output device.

PRINT {#port#,} {expr} {, or ; expr} . . .

or

? {#port#,} {expr} {, or ; expr} . . .

Where port# is an optional port number and expr is any valid numeric and/or string
expression. Multiple expressions must be separated by a comma or semicolon.

Discussion You can use the PRINT statement to print any combination of characters,
strings, and numbers to the display or to the communications ports. The
following discussion describes the various options of this powerful command in
detail.

Spaces between
expressions

The PRINT statement can print one or more expressions, where each is
separated by a comma or semicolon. The comma inserts a space between each
expression, while the semicolon inserts no spaces. (Note that BASIC handles
commas differently than most BASICs, which use the comma as an implied
tab.)

Suppressing the
carriage return/line

feed

At its conclusion, the PRINT statement sends a carriage return to the current
output device. By default, the Workstation sends a line feed after a carriage
return, although you can use the OPEN statement to defeat this feature (just
omit “LF” from the parameter list). You can defeat printing the carriage return
by ending the statement with a semicolon or a comma.

Printing numbers BASIC prints positive floating point numbers with a leading space and
negative floating point numbers with a leading minus sign. The only way to
eliminate the leading space is to convert the number to a string with the STR$
statement. You can adjust the output format of floating point numbers with the
USING statement.

BASIC prints hexadecimal numbers without leading or trailing spaces, but you
must use the alternative print statements PH0. or PH1.

Print USING format A PRINT statement can contain one or more USING statements that apply only
to the following floating point numbers in the current statement. (However, if
USING appears alone in a PRINT statement, then that output format becomes
the default format for all subsequent PRINT statements; consult the description
of PRINT USING next in this chapter for more information.)

Commands and Statements 10-87

Printing multiple
spaces or tabs

BASIC can print multiple spaces using the SPC operator; for example,
SPC(10) tells the Workstation to print ten spaces. Don’t forget, however, that
if the SPC operator is both preceded and followed by a comma, BASIC prints a
total of 12 spaces.

BASIC can also skip to another column using the TAB operator. For example,
TAB(10) tells the Workstation to print enough spaces to move the cursor to
column 10 (unless the cursor is already past column 10).

Printing strings The Workstation can print any character or group of characters if they are
enclosed in double quotation marks. In order to print a double quotation mark
or “control” character with an ASCII value of less than 20h, however, you must
use the CHR$ function. For example, to print a double quotation mark, your
program would read “PRINT CHR$(34).”

Output port The output of the PRINT statement goes to the device selected by the most
recent PR# statement. However, you can override this selection for the current
PRINT statement by specifying a port number first. For example, PRINT #0,
“TEST” sends the string “TEST” to the Workstation’s display.

The display and keyboard are also considered to be a port; the following table summarizes the
port names and numbers:

Name Number Description
COM0 0 Keypad and display
COM1 1 COM1 serial port

Examples >PRINT 10 * 3
 30

>PRINT "I AM FINE"
 I AM FINE

10 INPUT "Enter temperature",A
20 PRINT "The temperature is ";A;"degrees"
30 PRINT "The temperature is ",A,"degrees"
40 PRINT "The temperature is ";A,"degrees"
50 PRINT "The temperature is ",A;"degrees"

>RUN
Enter temperature 78
The temperature is 78degrees
The temperature is 78 degrees
The temperature is 78 degrees
The temperature is 78degrees

READY – RAM 1
>

10-88 Series 30/40 BASIC Guide

10 INPUT "ENTER NUMBER - ",A
20 INPUT "ENTER SECOND NUMBER - ",B
30 C = A + B : D = A * B
40 PRINT C,D

>RUN
ENTER NUMBER - 12
ENTER SECOND NUMBER - 44
56 528

READY – RAM 1
>

PRINT USING
Sets up format for printing numbers.

PRINT USING sexpr

Where sexpr specifies the format of printed variables; “0” specifies the general floating point
format.

Discussion The format string that follows the USING statement specifies to BASIC the
output format for floating point numbers. The default format is “0”, which
means that BASIC prints floating point numbers according to its standard
rules. The # symbol indicates a character position; for example, the format
string “##.##” indicates that BASIC should print two digits to the left of the
decimal point and two digits to the right. If you use the letter “Z” in place of
the “#” anywhere in the format string, then BASIC prints the leading zeroes.

The format string can include no more than eight “#” or “Z” symbols, because
BASIC stores numbers with only 8 significant digits.

If a number is too big to print according to the format statement, then BASIC
prints a question mark and then prints the number in the general floating
point format.

Floating point format
(USING “0”)

The printed appearance of a number in the floating point format depends on
the size of the number. If the number is between 0.000001 and 10,000,000,
then BASIC prints it just as it appears here. BASIC prints any number
outside that range in exponential format, whose general format is “n Ee”
where “n” is up to 8 significant digits of the number and “e” is the exponent
of the number.

BASIC prints positive numbers with a leading space and negative numbers with a leading
minus sign. To eliminate the leading space, your program must first convert the number to a
string with the STR$ command.

Commands and Statements 10-89

A PRINT statement that contains only a USING statement (followed by the format string, of
course) does not actually print; instead, it simply establishes the format as a “global” format
that applies to all subsequent PRINT statements. A PRINT statement can override the global
format by including a USING statement that applies only to the remainder of the PRINT
statement.

Examples The comma following the format statement prints a space before printing the
number; to suppress this, you should use a semicolon instead of a number.
Line 70 shows how to use the STR$ command to eliminate the leading space
for positive numbers.

10 PRINT PI
20 PRINT USING "###.##z", PI
30 PRINT USING "#.#######", PI
40 A$ = "#.##" : PRINT USING A$; PI
50 PRINT USING "##.##",PI*100
60 PRINT PI * 10 ^ 10
70 PRINT STR$(PI)

>RUN
 3.1415926
 003.141
 3.1415926
 3.14
 ? 314.15926
 3.1415926 E+10
3.1415926

READY – RAM 1
>

10-90 Series 30/40 BASIC Guide

PUSH
Places an expression on the argument stack.

PUSH aexpr

Where aexpr is an integer or floating point number and is pushed onto the argument stack.

Discussion BASIC maintains a “stack” where it saves the intermediate results of various
calculations. The PUSH command simply evaluates the subsequent numeric
expression and leaves the result on the stack.

BASIC does not provide any standard statements that require a preceding
PUSH. However, BASIC supports some undocumented CALLs that do require
a PUSH.

RAM
Selects a program for editing or inserts a copy of a program.

RAM prog#

or

RAM prog1 = RAM prog2

Where prog#, prog1, and prog2 are numbers less than 256, and prog2 exists.

Discussion When you use the command RAMx by itself, it selects program x for editing. If
program x doesn’t exist, then BASIC creates a new empty program at the end
of the directory. For example, if you type RAM 5 when there are only three
valid programs in memory, BASIC creates a new, empty program at RAM 4
and selects RAM 4 for editing.

To insert a copy of one program before another, you would use the command format
RAMx = RAMy, which inserts a copy of program y before program x. If program x doesn’t
exist, then BASIC copies program y to the end of the directory. For example, if you type RAM
5 = RAM 1 when there are only three valid programs in memory, then BASIC makes a copy of
RAM 1 at RAM 4.

Commands and Statements 10-91

Examples READY - RAM 1
>RAM 2

READY - RAM 2
>DIR
RAM 1 (1000H,0020H) - PROGRAM 1
RAM 2 (1020H,0020H) - PROGRAM 2

READY - RAM 2
>RAM 4

READY - RAM 3
>DIR
RAM 1 (1020H,0020H) - PROGRAM 1
RAM 2 (1040H,0020H) - PROGRAM 2
RAM 3 (1060H,0005H) -

READY - RAM 3
>RAM1 = RAM 2

READY - RAM 3
>DIR
RAM 1 (1000H,0020H) - PROGRAM 2
RAM 2 (1020H,0020H) - PROGRAM 1
RAM 3 (1040H,0020H) - PROGRAM 2
RAM 4 (1060H,0005H) -

READY – RAM 3
>

10-92 Series 30/40 BASIC Guide

REACT
Specifies the start-up action after reset.

REACT {par} {,par} . . . {,par}

Where par is a parameter (R, RAMx, C or P) that alters the Workstation’s start-up actions.

Discussion REACT (REset ACTion) allows you to set up the Workstation’s start-up
sequence. Typically, you use this command to make the Workstation
automatically RUN its program after reset.

Each REACT command replaces any previous REACT commands, except that the system
remembers REACT Cx commands. You can cancel all but REACT Cx by entering the
REACT command followed by no parameters.

If no parameters are listed, then the Workstation performs its default functions. The default
sequence after reset is:

1. Go to the Command mode.

2. Select the default port as the console port (COM1).

Note If you want your program to auto-start, then you must use the
REACT command before you copy your program to ROM.

R; Run Program This parameter causes the Workstation to automatically run a program after
power-up.

READY – RAM 1
>REACT R

READY – RAM 1
>ROM = RAM 1

READY - RAM1
>

C {#}; Console This parameter tells the Workstation which port is the console port. For
example, REACT C2 tells the Workstation to use port #2 as the console. You
should be careful, however, because this port selection refers to the alias and
not the actual hardware port number.

P; Protect When you use it with the R parameter, the P parameter locks BASIC in the run
mode; if program execution terminates for any reason, BASIC simply re-runs
the program.

Note If you use the P parameter, you should provide a “back
door” to terminate program execution or you will be unable
to perform troubleshooting. If you find yourself unable to
terminate a program, then you must download new
firmware, which erases everything.

Commands and Statements 10-93

READ
Reads values from a DATA statement and assigns them to
variables.

READ var {,var} {,var} . . . {,var}

Where var is any valid numeric or string variable.

Discussion The READ statement gets its data from DATA statements. Every time
BASIC READs a data, it points to the next item of data.

Unlike most BASICs, you must enclose DATA strings in quotation marks,
as shown in the second example below.

Examples 10 FOR I = 1 TO 6
20 READ A(I)
30 PRINT A(I), : NEXT
40 DATA 23, 56, 125, 400, 530, 409

>RUN
23 56 125 400 530 409

READY – RAM 1
>

If insufficient data exists to fill the list, an ERROR: NO DATA message is issued. To re-read
DATA statements from the beginning, use the RESTORE statement.

10 FOR I = 1 TO 8
20 READ A$(I)
30 PRINT A$(I),
40 IF I = 6 THEN RESTORE
50 NEXT
60 DATA "ABC","DEF","GHI","JKL","MNO","PQR"

>RUN
ABC DEF GHI JKL MNO PQR ABC DEF

READY – RAM 1
>

10-94 Series 30/40 BASIC Guide

REM
Indicates that the rest of the line is only a remark.

REM {remark}

Where remark is any string of characters.
Discussion BASIC ignores everything following the REM statement until the end of the

line. Numbered REM statements occupy program memory.

If you write your program in a word processor, you should consider including
REM statements without line numbers. When you download your program to
the Workstation, the REM statements don’t take any program memory because
the Workstation doesn’t save them.

Examples 10 INPUT "Enter first number ",A
20 INPUT "Enter second number ",B
30 PRINT A*B : REM MULTIPLY NUMBERS
40 PRINT A+B : REM ADD NUMBERS
50 PRINT A/B : REM DIVIDE NUMBERS
60 PRINT A-B : REM SUBTRACT NUMBERS
70 PRINT A^B : REM RAISE TO EXPONENT

>RUN
Enter first number 45
Enter second number 4
180
49
11.25
41
4100625

Commands and Statements 10-95

RENUM
Renumbers all or part of a program.

RENUM {new}{,inc}{,start}{,end}

Where new is the first new line number, inc is the amount by which each subsequent line
number will be increased, start is the old line number of the first line to renumber, and end is
the old line number of the last line to renumber. The default parameters are 100,10,0,65535; if
you omit any parameter, BASIC uses its default.

Discussion The RENUM command is a handy way to renumber your program. You can
renumber all or part of your program, depending on whether you specify any
parameters.

You cannot use RENUM to re-arrange lines in your program. For example, you cannot
renumber lines 100 through 199 so that they appear after lines 200 through 299; if you try,
BASIC issues a BAD ARGUMENT error instead.

If the system runs out of memory while renumbering, it prints the error message OUT OF
MEMORY. This normally would happen only if you have very little memory remaining and
insufficient space remains for BASIC to store a table that holds the old line numbers and their
corresponding new line numbers.

Note In very rare cases, it’s possible for BASIC to run out of
memory while actually renumbering. This could happen if
free memory is almost gone and a new line number makes a
line longer than it used to be. For example, if GOTO 10
becomes GOTO 1000, then the line becomes two bytes
longer. If there is insufficient free memory to store the
longer line, BASIC issues an error message and stops
renumbering in the middle, which leaves your program
scrambled beyond use.

To avoid this problem, we recommend that you save your
program on disk before renumbering.

Examples >LIST
 10 PRINT "LINE 10" : ON ERROR GOTO 40
 20 PRINT "LINE 20" : GOTO 30
 30 PRINT "LINE 30" : END
 40 RESUME 40

READY - RAM 1
>RENUM

>LIST
 100 PRINT "LINE 10" : ON ERROR GOTO 130/40
 110 PRINT "LINE 20" : GOTO 120
 120 PRINT "LINE 30" : END
 130 RESUME 120

READY - RAM 1
>

10-96 Series 30/40 BASIC Guide

RESTORE
Resets the pointer to the DATA items.

RESTORE {line#}

Where line# is any valid line number.
Discussion RESTORE resets the pointer used with READ and DATA statements. After

RESTORE, the READ starts with the first DATA statement again.

If you specify an optional line number after RESTORE, then BASIC resets the pointer to the
first DATA statement at or following the line number.

Examples 10 GOSUB 100
20 RESTORE
30 GOSUB 100
40 RESTORE 1010
50 GOSUB 100
60 END
100 FOR I = 1 TO 4 : READ X : PRINT X, : NEXT :PRINT
110 RETURN
1000 DATA 1,2
1010 DATA 3,4,5,6

>RUN
 1 2 3 4
 1 2 3 4
 3 4 5 6

READY - RAM 1
>

Commands and Statements 10-97

RESUME
Continues program execution at the end of error-handling.

Run mode only

RESUME {line#}

or

RESUME {NEXT}

Where line# is the line number where BASIC continues program execution at the conclusion of
the error-handling routine.

Discussion If you use the ON ERROR capability, your error-handling routine must
terminate with a RESUME command in order to continue program execution.

If there is no line#, BASIC continues execution where the error occurred; if RESUME is
followed by NEXT, BASIC continues execution at the statement following the statement that
caused the error.

Examples 5 ON ERROR GOTO 100
10 INPUT "Enter first number ",A
20 INPUT "Enter second number ",B
30 PRINT A*B : REM MULTIPLY NUMBERS
40 PRINT A+B : REM ADD NUMBERS
50 PRINT A/B : REM DIVIDE NUMBERS
60 PRINT A-B : REM SUBTRACT NUMBERS
70 PRINT A^B : REM RAISE TO EXPONENT
80 END
100 REM ERROR HANDLING
110 IF ERR = 1 THEN END
120 IF ERR = 10 THEN PRINT "Can't divide by
zero"
130 RESUME 60

>RUN
Enter first number 45
Enter second number 0
0
45
Can't divide by zero
45
1

READY – RAM 1
>

10-98 Series 30/40 BASIC Guide

RETI
Returns from ON TIME handling routine.

Run mode only

RETI

RETI has no additional parameters.

Discussion The RETI statement terminates an ON TIME service routine. The RETI
statement does the same thing as RETURN except that it also clears a software
interrupt flag so BASIC can handle subsequent interrupts.

Examples 10 ON TIME = 5 GOSUB 100
20 CLOCK 1
30 FOR I = 1 TO 50 : NEXT
40 PRINT "Waiting for interrupt",CR,
50 GOTO 30
100 PRINT "Interrupt evoked at",TIME, "seconds"
120 CLOCK 1 : RETI

>RUN
Waiting for interrupt
Interrupt evoked at 5.02 seconds
Interrupt evoked at 5.02 seconds

The above example works because of the RETI statement.

10 ON TIME = 5 GOSUB 100
20 CLOCK 1
30 FOR I = 1 TO 50 : NEXT
40 PRINT "Waiting for interrupt",CR,
50 GOTO 30
100 PRINT "Interrupt evoked at",TIME,
"seconds"
120 CLOCK 1 : RETURN : REM THIS IS THE WRONG
RETURN

>RUN
Interrupt evoked at 5.02 seconds
Waiting for interrupt

The above program does not work properly (only one interrupt executed) because the RETURN
statement was used instead of the RETI statement.

Commands and Statements 10-99

RETURN
Returns from a subroutine.

RETURN

Discussion RETURN terminates a subroutine originally called with GOSUB. If the
subroutine is an ON TIME service routine, then you must use RETI instead of
RETURN.

Examples 10 FOR I = 1 TO 10
20 IF I = 6 THEN GOSUB 100
30 PRINT I
40 NEXT
50 PRINT : "The job is finished"
60 END
100 PRINT "We are at number 6 now"
110 RETURN

>RUN
1
2
3
4
5
We are at number 6 now
6
7
8
9
10
The job is finished

READY – RAM 1
>

10-100 Series 30/40 BASIC Guide

RIGHT$
Returns the rightmost characters of a string.

RIGHT$(sexpr,iexpr)

Where sexpr is a string and iexpr is the number of characters in the result.

Discussion If iexpr is greater than the number of characters in the string, the entire string
is returned. If iexpr is zero, a null string (length 0) is returned.

Examples 10 A$ = "Phoenix"
20 B$ = RIGHT$(A$,3)
30 PRINT B$

>RUN
nix

READY – RAM 1
>

>PRINT RIGHT$("Phoenix",3)
nix

>

Commands and Statements 10-101

RND
Returns a random number between 0 and 1.

RND

Discussion The RND statement returns a random number between 0.0000000 and
0.9999999. The Workstation always generates random numbers in the same
sequence after a power-up.

The random number “seed” is a 16-bit binary number, and the random
numbers that the Workstation generates are in the range of 0/65535 to
65535/65535.

Examples 10 FOR I = 1 TO 5
20 PRINT INT(RND*100)
30 NEXT

>RUN
57
88
95
3
36

READY – RAM 1
>

10-102 Series 30/40 BASIC Guide

ROM
Copies a program in RAM to permanent memory in Flash.

ROM = RAM prog#

Where prog# is a number less than 256.

Discussion The ROM command allows you to copy a program in RAM to the
Workstation’s permanent memory in Flash.

Note To set up your program to start running automatically after
power-up, you must use the REACT R command before
you use the ROM command to copy your program to Flash.

Examples READY - RAM 1
>DIR
RAM 1 (1000H,0020H) - PROGRAM 1

READY - RAM 1
>REACT R

READY - RAM 1
>ROM = RAM 1

READY - RAM 1
>DIR
RAM 1 (1000H,0020H) - PROGRAM 1
ROM 1 (A000H,0020H) - PROGRAM 1

READY - RAM 1
>

Commands and Statements 10-103

RUN
Starts execution of a program.

RUN {line#} {RAM prog#}

Where line# is the line number at which to begin execution and prog# specifies which
program to run.

Discussion RUN clears all variables and starts program execution. You can optionally
specify a line number after RUN in order to begin execution with a line other
than the first, or you can specify a program number to run a program other
than the current. The valid combinations follow:

RUN Runs the current program starting at the first line
RUN line# Runs the current program starting at line#
RUN RAMx Runs program x starting at its first line
RUN line# RAMx Runs program x starting at line#

Examples 10 PRINT 1,
20 PRINT 2,
30 PRINT 3

>RUN
 1 2 3

READY – RAM 1
>RUN 20
 2 3

READY - RAM 1
>

10-104 Series 30/40 BASIC Guide

SDIM
Sets the maximum length of a string.

SDIM var$(iexpr)

or

SDIM = iexpr

Where var is the string name and iexpr is the length of the string (between 1 and 254)

Discussion The default length of a string variable is 10 characters. You can assign another
length using SDIM, but you must do so before your program refers to the
string. If your program contains an SDIM that sets the length of a string that
your program has already referenced, then BASIC prints a REDIMENSION
error message.

You can change the default length of string variables by using the second form
of SDIM shown above. For example, to change the default string length to 20,
your program should include the statement “SDIM = 20.” This statement does
not change the lengths of any strings that your program already defined.

SDIM sets up the length only of a scalar (non-array) string; to establish the
length of a string array, you must use the DIM statement.

You can use SDIM to set up more than one variable at a time; see line 10 below
for an example.

Examples 10 SDIM A$(20), B$(35), C$(20), D$(50)
20 A$ = "Christmas time"
30 B$ = " is for children,"
40 C$ = " and adults too."
50 D$ = A$+B$+C$
60 PRINT D$

>RUN
Christmas time is for children, and adults too.

READY – RAM 1
>

Commands and Statements 10-105

The following program example produces an error at line 120 because it tries to change the
length of string variable A$ after your program has already created the string.

10 PRINT A$
 .
 .
120 SDIM A$(30)

>RUN
ERROR: REDIMENSION - IN LINE 120

120 SDIM A$(30)
-------- X

SGN
Returns the sign.

SGN(expr)

Where expr is a numeric expression.

Discussion SGN returns a 1 if the argument is positive; a 0 if the argument is zero; and a
-1 if the argument is negative.

Examples 10 A=0: B=-4.56: C=56.98
20 PRINT SGN(A), SGN(B), SGN(C)

>RUN
0 -1 1

READY – RAM 1
>

10-106 Series 30/40 BASIC Guide

SIN
Returns the sine.

SIN(expr)

Where expr is a number or valid arithmetic calculation in radians.

Discussion Like all numeric functions, SIN may appear on the right of an assignment
statement, within a PRINT statement, and as part of an arithmetical
expression. The argument for the SIN function is a value expressed in radians;
divide degrees by 57.29577 to convert degrees to radians.

Trigonometric
Relationships

The sine of a triangle is the length of the opposite side divided by the length of
the hypotenuse side (a/c). See the figure below for the relationships between
SIN Ø, side a, and side c.

0

+1

-1
0 90 180 270 360

ANGLE (degrees)

a

Ø

c

SIN Ø = a/c a =SIN Ø c c = a/SIN Ø

SINE

Examples 10 INPUT "Enter angle in degrees ",A
20 INPUT "Enter length of side a ",L
30 R = A/57.29577 : S = SIN(R) : REM Calculate sine
40 C = L/S : REM Calculate length of side C
50 PRINT "Length of side c is ";C

>RUN
Enter angle in degrees 30
Enter length of side a 70
Length of side c is 140

READY – RAM 1
>

Commands and Statements 10-107

SPC
Prints spaces in a PRINT statement.

SPC(iexpr)

Where iexpr must be between 0 and 255.

Discussion SPC prints the number of spaces specified in iexpr in a PRINT statement.

Examples 10 A$="over" : B$="there"
20 C$="insure" : D$="vehicles"
30 PRINT A$; SPC(15); B$
40 PRINT C$; SPC(15); D$

>RUN
over there
insure vehicles

READY – RAM 1
>

SQR
Returns the square root.

SQR(expr)

Where expr is a number equal to or greater than zero.

Discussion SQR returns the square root of the number.

Examples 10 FOR X = 1 TO 21 STEP 4
20 PRINT X, SQR (X)
30 NEXT

>RUN
1 1
5 2.236068
9 3
13 3.6055513
17 4.1231057
21 4.5825757

READY – RAM 1
>

10-108 Series 30/40 BASIC Guide

ST@
Stores one or more variables in memory.

ST@ iexpr, var1 {,var2} . . . {,varx}

Where iexpr is the starting memory location to hold variable var1 and optional variables var2
through varx.

Discussion The ST@ statement stores one or more variables starting at a specified location
within memory. This is useful when your program must save numbers and/or
strings in either memory for later retrieval.

There is a special variable called VAD that holds the last address plus 1 used
by your most recent ST@ (or LD@) command. This is especially useful when
storing strings, because it helps you eliminate the bookkeeping that is otherwise
necessary to keep track of the next available location.

See the description of LD@ earlier in this chapter for a complete example of using ST@.

Commands and Statements 10-109

STOP
Terminates program execution.

Run mode only

STOP

Discussion When BASIC encounters a STOP statement, it terminates program
execution and prints the line number where it stopped. From the
Command mode, you can enter the CONT command to resume program
execution immediately after the STOP.

Examples 10 FOR X = 1 TO 21 STEP 4
20 PRINT X, SQR (X)
30 NEXT
40 STOP
50 FOR R = 1 TO 20
60 PRINT R,
70 NEXT

>RUN
1 1
5 2.236068
9 3
13 3.6055513
17 4.1231057
21 4.5825757
STOP - IN LINE 40

READY - RAM 1
>CONT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20

READY – RAM 1
>

10-110 Series 30/40 BASIC Guide

STR$
Returns the string form of a number.

STR$(expr)

Where expr is any numeric expression.

Discussion The STR$ function is the inverse of the VAL function; it turns a number into a
string. This is handy when you want to print a number without printing any
leading spaces.

STR$ converts expr to a string according to the current PRINT USING format,
except that it omits leading spaces.

Examples 10 INPUT "Enter number ",A
40 A$=STR$(A) : REM Convert A to a string in A$
60 PRINT USING "#z#.##"
70 B$=STR$(A) : REM Convert according to USING format.
80 PRINT A : PRINT A$: PRINT B$

>RUN
Enter number 12.578
 12.578
12.578
012.57

READY – RAM 1
>

Commands and Statements 10-111

TAB
Moves the cursor to the position specified.

TAB(iexpr)

Where iexpr returns a number between 0 and 255.

Discussion Within a PRINT statement, TAB tells BASIC to send enough spaces to move
the cursor to the column specified.

Examples 10 A$="over" : B$="there"
20 C$="insure" : D$="vehicles"
30 PRINT A$; TAB(15); B$
40 PRINT C$; TAB(15); D$

>RUN
over there
insure vehicles

READY – RAM 1
>

Compare the printed result of this example to the example shown in the SPC description.

10-112 Series 30/40 BASIC Guide

TAN
Returns the tangent.

TAN(expr)

Where expr is a number or valid arithmetic calculation in radians.

Discussion Like all numeric functions, TAN may appear on the right of an assignment
statement, within a PRINT statement, and as part of a logical expression. The
argument for the TAN function is a value expressed in radians; divide degrees
by 57.29577 to convert degrees to radians.

Trigonometric
Relationships

The tangent of a triangle is the length of the opposite side divided by the length
of the adjacent side (a/b). See the figure below for the relationships between
TAN Ø, side a, and side b.

0

+10

-10

0 90 180 270 360
ANGLE (degrees)

b

Ø

a
TAN Ø = a/b
a = TAN Ø b
b = a/TAN Ø

TAN

8
8

Examples 10 INPUT "Enter angle in degrees ",A
20 INPUT "Enter length of side a ",L
30 R=A/57.29577 : T=TAN(R) : B = L/T
40 B=B*100 : B=B+0.5 : B=INT(B) : B=B/100 : REM ROUND
50 PRINT "Length of side b is ";B

>RUN
Enter angle in degrees 73
Enter length of side a 536
Length of side b is 163.87

READY – RAM 1
>

Commands and Statements 10-113

TIME
Returns or sets the built-in TIME variable.

TIME

Discussion BASIC has a special variable called TIME that increases every 5 milliseconds.
When TIME reaches the value of 65,535.995 seconds, it rolls over to 0 instead
of going to 65,536.

The CLOCK 1 command resets TIME to 0, and if BASIC has already executed
an ON TIME command, then CLOCK 1 also enables the ON TIME interrupt.
(CLOCK 0 has no effect on the TIME variable; it simply disables the ON
TIME interrupt.)

Your program can also set the value of TIME by simply equating it to a
numeric value.

Consult the discussion of “ON TIME” for more information.

Examples The example below shows how your program can set the TIME variable but
that it continually increases:

>TIME = 43.5 : PRINT TIME, TIME

43.5 43.51
>

10-114 Series 30/40 BASIC Guide

TIME$
Returns or sets the time of day.

TIME$ = “hh : mm : ss”

Where hh : mm : ss is hours, minutes and seconds respectively in 24 hour format.

Discussion On power-up, the Workstation sets TIME$ to “00:00:00.” Your program can
set TIME$ as shown in the box above. The Workstation considers missing
parameters to be zero; for example, if TIME$ is “11:25:30/40”, the statement
TIME$ = “12” sets the time to 12:00:00.

The Workstation is accurate only to within a few minutes every day.

Examples >TIME$ = "15:34:22"

READY – RAM 1
>

>TIME$ = "15:34:22"

READY – RAM 1
>LIST
10 L$ = LEFT$(TIME$,2)
20 M$ = MID$(TIME$,4,2)
30 R$ = RIGHT$(TIME$,2)
40 PRINT "The time is ";L$;" hours, "; M$; " minutes "

READY - RAM 1
>RUN
The time is 15 hours, 34 minutes

READY – RAM 1
>

Commands and Statements 10-115

TROFF
Turns off tracing of program execution.

TROFF

Discussion TROFF turns off the tracing of program execution; consult the description of
TRON for more information.

Examples 10 FOR I 1 TO 5
20 IF I = 3 THEN GOSUB 100
30 PRINT I
40 NEXT
50 END
100 PRINT "This is GOSUB"
110 RETURN

>TRON
>RUN
[10] [20] [30] 1
[40] [20] [30] 2
[40] [20] [100] This is GOSUB
[110] [30] 3
[40] [20] [30] 4
[40] [20] [30] 5
[40] [50]

READY – RAM 1
>TROFF
>RUN
1
2
This is GOSUB
3
4
5

READY – RAM 1
>

10-116 Series 30/40 BASIC Guide

TRON
Enables tracing of program execution.

TRON

Discussion TRON tells BASIC to print to the console the line number (enclosed within
brackets) of each statement it executes. The TROFF command turns off the
trace mode.

Examples 10 FOR I 1 TO 5
20 IF I = 3 THEN GOSUB 100
30 PRINT I
40 NEXT
50 END
100 PRINT "This is GOSUB"
110 RETURN

>TRON
>RUN
[10] [20] [30] 1
[40] [20] [30] 2
[40] [20] [100] This is GOSUB
[110] [30] 3
[40] [20] [30] 4
[40] [20] [30] 5
[40] [50]

READY – RAM 1
>

VAD
Returns last address plus 1 used by the most recent ST@ or
LD@

VAD

Discussion VAD returns the last address plus 1 used by the most recent ST@ or LD@
command.

See the description of LD@ for more details and examples.

Commands and Statements 10-117

VAL
Converts a string to a number.

VAL(sexpr)

Where sexpr is a string expression whose contents are assumed to be numeric.

Discussion VAL converts a string to a number (note that this is the reverse of the STR$
function). If the string does not start with a digit, it has a value of 0. If the
string starts with a number but contains letters, VAL returns only up to the first
non-numeric digit.

VAL can return the value of strings in hexadecimal format, but you should
remember that a hex number ends with the letter H. If you want to convert a
hexadecimal string that does not contain the H, you can use HVAL instead.

Examples 10 INPUT "Enter area ZIP Code ",Z$
20 GOSUB 500
30 IF VAL(Z$) = 61201 THEN PRINT "Rock Island, IL"
40 IF VAL(Z$) = 52748 THEN PRINT "Eldridge, IA"
50 IF VAL(Z$) = 52804 THEN PRINT "Davenport, IA"
60 IF VAL(Z$) = 61265 THEN PRINT "Moline, IL"
70 IF VAL(Z$) = 53115 THEN PRINT "Delavan, WI"
80 END
500 PRINT "The city is ",
510 RETURN

>RUN
Enter area ZIP Code 52748
The city is Eldridge, IA

READY – RAM 1
>

10-118 Series 30/40 BASIC Guide

VARPTR
Returns the memory address of a variable.

VARPTR(var)

Where var is any variable name of any type.

Discussion VARPTR returns the starting address in external memory of a variable. Your
program can access external memory with the XBY() operator.
The storage format for various variable types is shown below:

Floating Point Byte
0
1
2
3
4
5

 Function
Most significant byte
Next most significant byte
Next least significant byte
Least significant byte
Sign (0 if positive, 1 if negative)
Exponent (2 to 129 are negative exponents -127 to -1; 130/40 is
an exponent of 0; 131 to 255 are positive exponents 1 to 126).

Integer Byte
0
1
2
3

4
5

Function
Least significant byte
Most significant byte
Sign (0 if positive, 1 if negative)
Equals 0 if integer is 0; else equals most significant byte OR’ed
with least significant byte
Unused
Unused

String (scalar) Byte
0
1
2
3
4
5

Function
Maximum allowed length of string plus 1
High byte of address where actual string is stored
Low byte of address where actual string is stored
Unused
Unused
Unused

The storage of the string itself begins with a length byte that is the actual length of the string
(not the maximum length allowed). The bytes following are the ASCII characters for the
string.

To find out the address of an array variable, var must refer to an element in the array. For
example, VARPTR(A(1)) returns the address of the second element in the floating point array
named A.

Commands and Statements 10-119

Note that VARPTR operates differently for strings. It returns the same value regardless of the
array element:

String (array) Byte
0
1
2
3
4
5

Function
Maximum allowed length of string plus 1
High byte of address where first string is stored
Low byte of address where first string is stored
Number of strings in array
Unused
Unused

Examples >A = 10
>PRINT VARPTR(A)
 63479

>

VERSION
Returns the version number of the BASIC firmware.

VERSION

Discussion VERSION returns the version number of the BASIC firmware in the
Workstation
.

Examples >PRINT VERSION
 5.50

>

10-120 Series 30/40 BASIC Guide

XBY
Retrieves or assigns a value to external memory.

XBY(iexpr)

Where iexpr returns a number between 0 and 65,535; if iexpr is less than 32,768 (8000h), then
XBY refers to external data memory (RAM); otherwise, XBY refers to external code memory
(Flash EPROM).

Discussion XBY retrieves from or assigns a byte value to the external data memory at
address iexpr. If your program refers to addresses at or above 32,768 (8000h),
then XBY refers to code memory, which is Flash EPROM.

You must be careful not to use XBY to change code memory without careful study. Some of
BASIC itself exists in the firmware space above 8000h, and BASIC stores your program at
0A000h in the same area. Please see the discussion of LD@ earlier in this chapter for more
details.

Examples >PH0. XBY(1000H)
12H

>

Chapter 11

Operators

Series 30/40 BASIC contains a complete set of arithmetic and relational operators. The
generalized form of all arithmetic operators is as follows:

expr op expr
 where op is one of the arithmetic operators

Precedence BASIC scans an expression from left to right, performing operations of higher
precedence first and equal precedence from left to right. The order of
precedence for solving mathematical expressions is as follows:

1. Operators that use parentheses ()
2. Exponentiation (^)
3. Negation (–)
4. Multiplication (*) and Division (/)
5. Addition (+) and Subtraction (–)
6. Relational Operators (=, <>, >, >=, <, <=)
7. Logical AND, OR, and INV
8. Logical XOR

A good rule of thumb to follow is “when in doubt, use parentheses.”

Examples 10 A = 4 + 3 * 2
20 PRINT A

>RUN
 10

In the preceding example, BASIC first multiplies 3 by 2 and then adds 4.

10 A = 2 * (17 + 4^3)
20 PRINT A

>RUN
 162

In the example above, BASIC first performs exponentiation (43), adds that result to 17, and
multiples that result by 2.

11-2 Series 30/40 BASIC Guide

+ (addition)
Returns the sum of numbers or joins strings.

expr1 + expr2

Where expr1 and expr2 are any expressions. If both are strings, then BASIC joins string2 to
the end of string1 and returns that combination as a single string.

Examples >PRINT 3 + 5
 8

>A$ = "HELLO" : B$ = " THERE" : PRINT A$ + B$
HELLO THERE

>

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
30 C = A + B
40 PRINT : PRINT "The answer is ";C

>RUN
Enter first number 12
Enter second number 14

The answer is 26

READY – RAM 1
>

Operators 11-3

– (subtraction or negation)
Returns the difference.

expr1 – expr2

or

– expr3

Where expr1, expr2, and expr3 are numeric expressions.

Examples >PRINT 10 - 25
 -15

>PRINT - MTOP
 -8192

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
30 C = A - B
40 PRINT : PRINT "The answer is ";C

>RUN
Enter first number 22
Enter second number 14

The answer is 8

READY – RAM 1
>

11-4 Series 30/40 BASIC Guide

* (multiplication)
Returns the arithmetic product of two expressions.

expr1 * expr2

Where expr1 and expr2 are any numeric expressions.

Examples >PRINT 3 * 5
 15

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
30 C = A * B
40 PRINT : PRINT "The answer is ";C

>RUN
Enter first number 12
Enter second number 14

The answer is 168

READY – RAM 1
>

Operators 11-5

/ (division)
Returns the arithmetic quotient of two expressions.

expr1 / expr2

Where expr1 and expr2 are any numeric expressions. If expr2 is zero, then BASIC issues a
DIVIDE BY ZERO error (error code 10).

Examples >PRINT 100 / 25
 4

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
30 C = A / B
40 PRINT : PRINT "The answer is ";C

>RUN
Enter first number 22
Enter second number 14

The answer is 1.571428

READY – RAM 1
>

11-6 Series 30/40 BASIC Guide

^ (exponentiation)
Returns the arithmetic result of a number raised to an
exponent.

expr ^ iexpr

Where expr is any numeric expression; iexpr is an integer between 0 and 255.

Examples >PRINT 6 ^ 4
 1296

10 INPUT "Enter first number",A
20 INPUT "Enter exponent",B
30 C = A ^ B
40 PRINT : PRINT "The answer is ";C

>RUN
Enter first number 22
Enter exponent 5

The answer is 5153632

READY – RAM 1
>

Operators 11-7

= (equal)
Compares two expressions and returns “true” if they are equal.

expr1 = expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion Relational expressions involve the operators = (equal), <> (not equal), >
(greater than), >= (greater than or equal), < (less than), and <= (less than or
equal). These operators compare two numeric or string expressions and return
a result of “true” or “false.” Numerically, a true result is 65,535 and a false
result is 0.

The relational operators can work with either numeric expressions or string expressions. If a
relational expression contains an argument of each type, BASIC issues a TYPE MISMATCH
error.

BASIC considers strings to be equal or if they are exactly identical. BASIC compares strings
by taking one character at a time from each string and comparing their ASCII codes. If the
ASCII codes are different, then BASIC considers the lower to be less than the higher. If
BASIC reaches the end of one string without differences, then it considers the shorter string to
be less than the longer one. All characters and spaces count; BASIC does not ignore leading or
trailing spaces.

Examples >PRINT 6 = 4
 0

>A = 3 : IF A = 3 THEN PRINT "SAME"
SAME

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
30 IF A = B THEN PRINT "Numbers are equal"
40 IF A <> B THEN PRINT "Numbers are not
equal"

>RUN
Enter first number 22
Enter second number 22
Numbers are equal

READY – RAM 1
>

11-8 Series 30/40 BASIC Guide

10 PRINT : INPUT "Enter first string: ",A$
20 INPUT "Enter second string: ",B$
30 IF A$ = B$ PRINT "Strings are identical"
40 IF A$ < B$ PRINT "First string is less than second"
50 IF A$ > B$ PRINT "First string is greater than
second"
60 GOTO 10

>RUN
Enter first string: ABC
Enter second string: ABC
Strings are identical

Enter first string: abc
Enter second string: ABC
First string is greater than second

Enter first string: ABC
Enter second string: ABCD
First string is less than second

READY – RAM 1
>

<> (not equal)
Compares two expressions and returns “true” if they are not
equal.

expr1 <> expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For a complete description of relational operators, see the Discussion on page
12-7.

Examples >PH0. 6 <> 6
0H

>PRINT 4^3 <> 64
 0

Operators 11-9

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
30 IF A = B THEN PRINT "Numbers are equal"
40 IF A <> B THEN PRINT "Numbers are not
equal"

>RUN
Enter first number 22
Enter second number 102

Numbers are not equal

READY – RAM 1
>

< (less than)
Returns “true” if the first expression is less than the second.

expr1 < expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For a complete description of relational operators, see the Discussion on page
12-7.

Examples >PRINT 4 < 6
 65535

>PRINT 6 < 4
 0

>PRINT 4^3 < 64
 0

You can use the NOT statement in combination with relational operators to invert a result, as
shown in the examples below:

11-10 Series 30/40 BASIC Guide

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
25 PRINT
30 IF A < B THEN PRINT "Result is true"
40 IF NOT(A < B) THEN PRINT "Result is not true"

>RUN
Enter first number 22
Enter second number 22

Result is not true

READY – RAM 1
>

> (greater than)
Returns “true” if the first expression is greater than the second.

expr1 > expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For a complete description of relational operators, see the Discussion on page
12-7.

Examples >PRINT 4 > 6
 0

>PRINT 6 > 4
 65535

>PRINT 4^3 > 4^3
 0

You can use the NOT statement in combination with relational operators to invert a result, as
shown in the examples below:

Operators 11-11

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
25 PRINT
30 IF A > B THEN PRINT "Result is true"
40 IF NOT(A > B) THEN PRINT "Result is not
true"

>RUN
Enter first number 45
Enter second number 22

Result is true

READY – RAM 1
>

<= (less than or equal to)
Returns “true” if the first expression is less than or equal to the
second.

expr1 <= expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For a complete description of relational operators, see the Discussion on page
12-7.

Examples >PRINT "12" <= "012"
 0

>PRINT 6 <= 4
 0

>PRINT 4^3 <= 4^3
 65535

You can use the NOT statement in combination with relational operators to invert a result, as
shown in the examples below:

11-12 Series 30/40 BASIC Guide

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
25 PRINT
30 IF A <= B THEN PRINT "Result is true"
40 IF NOT(A <= B) THEN PRINT "Result is not
true"

>RUN
Enter first number 45
Enter second number 22

Result is not true

READY – RAM 1
>

>= (greater than or equal to)
Returns “true” if the first expression is greater than or equal to
the second.

expr1 >= expr2

Where expr1 and expr2 are either both numeric expressions or both string expressions.

Discussion For a complete description of relational operators, see the Discussion in
Chapter 11.

Examples >PRINT 4 >= 6
 0

>PRINT 6 >= 4
 65535

>PRINT 4^3 >= 4^3
 65535

You can use the NOT statement in combination with relational operators to invert a result, as
shown in the examples below:

Operators 11-13

10 INPUT "Enter first number",A
20 INPUT "Enter second number",B
25 PRINT
30 IF A >= B THEN PRINT "Result is true"
40 IF NOT(A >= B) THEN PRINT "Result is not
true"

>RUN
Enter first number 45
Enter second number 22

Result is true

READY – RAM 1
>

Chapter 12

Logic

BASIC provides the logic functions associated with industrial control applications. In all,
seven logic functions are available; these are:

Logic Function BASIC Function
AND AND
OR OR
XOR (Exclusive OR) XOR
INV(Invert) INV
NAND INV(AND)
NOR INV(OR)
XNOR (Exclusive NOR) INV(XOR)

Truth Tables The results of logic functions to their inputs are summarized in the truth table
below. For the following, the function is assumed to contain two inputs,
however the truth table is identical for any number of inputs to the function.

Result of Result of Result of Result of
Operation 0 : 0 0 : 1 1 : 0 1 : 1
AND 0 0 0 1
OR 0 1 1 1
XOR (Exclusive OR) 0 1 1 0
INV(Invert) (1 input only) 1 0
NAND 1 1 1 0
NOR 1 0 0 0
XNOR (Exclusive NOR) 1 0 0 1

12-2 Series 30/40 BASIC Guide

AND
Returns the logical AND.

iexpr1 AND iexpr2

Where iexpr1 and iexpr2 are any positive integer expressions. Although control logic results
are 0 or 1, the AND operator does a “bitwise” AND on each bit of the integers. For example:

Bit Format Decimal Format
0010 1011 43

AND 1010 0101 165
0010 0001 33

Relay Logic MIL STD Logic Symbol

A

B
CC

A B
] [] [

Truth Table
C = A AND B
 A B C

0 0 0
0 1 0
1 0 0
1 1 1

Examples >PRINT 3 AND 2
 2

>PRINT 1 AND 0 AND 1 AND 0
 0

Logic 12-3

OR
Returns the logical OR of two expressions.

iexpr1 OR iexpr2

Where iexpr1 and iexpr2 are any positive integer expressions. Although control logic results
are 0 or 1, the OR operator does a “bitwise” OR on each bit of the integers. For example:

Bit Format Decimal Format
0010 1011 43

OR 1010 0101 165
1010 1111 175

Relay Logic MIL STD Logic Symbol

C
A

B

C
A
] [

] [
B

Truth Table
C = A OR B

 A B C
0 0 0
0 1 1
1 0 1
1 1 1

Examples >PRINT 4 OR 1
 5

>PRINT 1 OR 0 OR 1 OR 0
 1

12-4 Series 30/40 BASIC Guide

XOR
Returns the logical exclusive-OR.

iexpr1 XOR iexpr2

Where iexpr1 and iexpr2 are any positive integer expressions. Although control logic results
are 0 or 1, the XOR operator does a “bitwise” XOR on each bit of the integers. For example:

Bit Format Decimal Format
0010 1011 43

XOR 1010 0101 165
1000 1110 142

Relay Logic MIL STD Logic Symbol

X
A
] [

] [
B

C
A

B

C
A
] [

] [
B

X
] [

Truth Table
C = A XOR B

 A B C
0 0 0
0 1 1
1 0 1
1 1 0

Examples >PRINT 9 XOR 12
 5

Logic 12-5

INV
Returns 0 if the expression <> 0; returns 1 if the expression =
0.

INV(iexpr)

Where iexpr is any positive integer; if iexpr is not 0, then the INV operator returns 0; if [expr]
is 0, then INV returns 1.

Relay Logic MIL STD Logic Symbol

A AB
A
] [

C
B
] [C = A

Truth Table
B = INV(A)

 A B
0 1
1 0

Examples >PRINT INV(1)
 0

12-6 Series 30/40 BASIC Guide

INV AND
Returns the logical NAND.

INV(iexpr1 AND iexpr2)

Where iexpr1 and iexpr2 are any positive integer expressions. INV returns 0 if the result of
the AND is non-zero, and returns 1 if the result is 0.

Relay Logic MIL STD Logic Symbol

C
A
] [

] [
B

A

B
C

Truth Table
C = INV(A AND B)

A B C
0 0 1
0 1 1
1 0 1
1 1 0

Examples 10 INPUT A : INPUT B
20 C = INV(A AND B) : REM NAND logic result
30 PRINT C

>RUN
?0
?1
1

READY – RAM 1
>

Logic 12-7

INV OR
Returns the logical NOR.

INV(iexpr1 OR iexpr2)

Where iexpr1 and iexpr2 are any positive integer expressions. The previous numeric
examples don’t really apply, since INV returns 0 if the result of the OR is non-zero, and INV
returns 1 if the result of is 0.

Relay Logic MIL STD Logic Symbol

C
A B
] [] [C

A

B

Truth Table
C = INV(A OR B)

 A B C
0 0 1
0 1 0
1 0 0
1 1 0

Examples 10 INPUT A : INPUT B
20 C = INV(A OR B) : REM NOR logic result
30 PRINT C

>RUN
?0
?1
0

READY – RAM 1
>

12-8 Series 30/40 BASIC Guide

INV XOR
Returns the logical XNOR.

INV(iexpr1 XOR iexpr2)

Where iexpr1 and iexpr2 are any positive integer expressions. The previous numeric
examples don’t really apply, since INV returns 0 if the result of the XOR is non-zero, and INV
returns 1 if the result of is 0.

Relay Logic MIL STD Logic Symbol

C
A

B

X
A B
] [] [

C
A B
] [] [

] [
X

Truth Table
C = INV(A XOR B)

 A B C
0 0 1
0 1 0
1 0 0
1 1 1

Examples 10 INPUT A : INPUT B
20 C = INV(A XOR B) : REM XNOR logic result
30 PRINT C

>RUN
?17
?17
 1

READY – RAM 1
>

Chapter 13

CALLs

To make specific features of the Workstation easier to use, we’ve included some built-in
subroutines that you can access through a CALL statement. If the number following the CALL
is between 1 and 127, then the CALL refers to a built-in subroutine, not to a machine language
subroutine you may have placed in memory yourself.

When a CALL requires that you provide data, your program must first PUSH the data on the
stack; other CALLs return a result that you must POP after the CALL. The rest of this chapter
describes each CALL and indicates when it requires input data or returns output data.

If the CALL does not require input or return a result, you need only the CALL alone, as shown
in the format below, where iexpr is the number of the CALL.

CALL iexpr

If the CALL requires input, you must PUSH the data on the stack first, as shown in the
following format, where expr must return a numeric result:

PUSH expr : CALL iexpr

If the CALL returns a result, you must POP the result into a numeric variable after the CALL,
as shown in the following format:

CALL iexpr : POP var

13-2 Series 30/40 BASIC Guide

CALL 12
Clears to the end of the display.

CALL 12

Discussion CALL 12 erases the display from the current cursor position to the bottom
right corner of the screen.

>80 CALL 12 : REM Clear to end of display

CALL 13
Clears to the end of the line on the display.

CALL 13

Discussion CALL 13 erases the display from the current cursor position to the end of the
current line.

>80 CALL 13 : REM Clear to end of line

CALLs 13-3

CALL 30
Turn on COM1’s RTS line.

CALL 30/40

Discussion CALL 30 turns on the RTS line on COM1. In order for this to work properly,
you must open COM1 with the RN parameter. CALL 33 turns off RTS.

>10 CALL 30 : REM Turn on COM1 RTS

CALL 33
Turn off COM1’s RTS line.

CALL 33

Discussion CALL 33 turns off the RTS line on COM1. In order for this to work properly,
you must open COM1 with the RN parameter. CALL 30 turns on RTS.

>10 CALL 33 : REM Turn off COM1 RTS

13-4 Series 30/40 BASIC Guide

CALL 38
Enters the on-line configuration menu.

CALL 38

Discussion CALL 38 enters the on-line configuration menu, which allows you to
configure many of the Workstation’s operating parameters.

When you exit from the on-line configuration menu, the Workstation “warmstarts” BASIC,
which means that it clears all variables. Although a running program can contain CALL 38,
exiting from the on-line configuration menu cannot return you to the program.

However, if you set up your Workstation with REACT R, then the unit automatically runs the
program after returning from the on-line configuration menu.

CALL 39
Enters the monitor.

CALL 39

Discussion CALL 39 enters the Workstation’s internal “monitor” program. When you
enter the monitor, you see the following screen:

Debug Monitor(V2.00)
Ready>

When the monitor is running, you can download new firmware. You can
also type some special commands, including INIT, which performs a first-
time initialization of BASIC and erases the current program from memory.
The other monitor commands are not useful.

CALLs 13-5

CALL 40 and 41
Returns the number of characters in COM1 buffer.

CALL 40 : POP var

Discussion These CALLs return the number of characters in a port’s receive or transmit
communications buffer. For example, if the result of CALL 40 is 2, that means
that there are two characters waiting in port #1’s receive buffer; your program
can fetch these characters with an INPUT or INPUT$ statement.

As another example, if the result of CALL 41 is 15, that means that there are 15 characters in
port #1’s transmit buffer remaining to be sent; your program can watch this value to make sure
characters are going out; if the value doesn’t change, then transmitting has halted for some
reason.

CALL Function
40 Port #1 receive
41 Port #1 transmit

10 CALL 40 : POP A : Return number of characters in port#1
20 PRINT A

13-6 Series 30/40 BASIC Guide

CALL 82
Prints a list of all variables used.

CALL 82

Discussion CALL 82 prints a list of all the variables created by your program. You
must execute this CALL after you run your program. The list is in the
sequence in which the variables are first used by your program. For each
item in the list that is an array, string, or string array, the list includes the
number of elements in the array and/or the maximum length of the string.

>CALL 82

A$(127)
B$(27)
K$(27,20)
K(27)
I
I%
I%(10)
M
MH
X
P
ER

Appendix A

Speed-up Hints

This section offers some programming techniques you can use to squeeze the maximum speed
out of your BASIC program.

Subroutines Whenever BASIC executes an instruction that goes to a line number (GOTO,
GOSUB, ON ERROR and ON TIME), it starts looking for that line number
from the beginning of the program.

If you have subroutines that your program calls frequently, then you should
place them as close as possible to the beginning of your program. For example,
many experienced programmers start their programs with the instruction
“GOTO 1000” and use line numbers 10 through 999 for subroutines.

BASIC uses about 40 microseconds to scan through a line while performing a
line search. For example, if BASIC finds a subroutine at the 10th line instead
of the 110th line, it takes 4 milliseconds less time to find it.

Variables Each time your program creates a variable, BASIC assigns it to the next position
in the list. And every time your program refers to a variable, BASIC looks
through the list starting with the first variable created.

To gain maximum speed in the use of variables, your program should create the
most-used variables first. For example, if your program frequently refers to X
and Y, then your program could simply contain the following line to create
those variables: Y = 0 : X = 0. Because you listed Y first, BASIC finds it first.

BASIC uses 12 microseconds to scan through each variable when it searches for
a variable.

A-2 Series 30/40 BASIC Guide

Constants When BASIC encounters a constant, such as 7 or 3.2728, it must convert that
number into its internal format. Because this takes more time than simply
looking up a variable, you should convert frequently-used constants to variables
instead.

For example, you might want to initialize an array of 100 numbers to the value
55. Although each of the following routines accomplishes this, the second
routine is 25 milliseconds faster than the first:

10 REM This uses a constant.
20 DIM D(100)
40 FOR I = 1 TO 100 : D(I) = 55 : NEXT

10 REM This uses a variable instead of a constant.
15 REM (And this is 25 milliseconds faster!)
20 DIM D(100)
30 X = 55
40 FOR I = 1 TO 100 : D(I) = X : NEXT

Integer vs.
Floating Point

BASIC performs 4-function arithmetic about twice as fast when using integer
variables (indicated with the % symbol) instead of floating point.

For floating-point operations such as trigonometric functions, your program runs
faster if you use floating-point variables. When you use integer variables in
floating-point operations, BASIC converts the integer to floating point before
processing.

FOR . . . NEXT
Loops

The best way to speed up a FOR-NEXT loop is to omit the optional variable
following NEXT. For example, although the following two lines are equivalent,
the second executes about 10% faster than the first:

10 FOR I = 1 TO 1000 : NEXT I
20 FOR I = 1 TO 1000 : NEXT : REM This is about 10% faster.

Appendix B

BASIC Differences

Differences between Series 30/40 BASIC and GW-BASIC

This section describes the main differences between the BASIC in the Series 30/40
Workstation and the GW-BASIC in IBM-compatible PCs.

Hardware-
specific

functions

Because the Series 30/40 Workstation is fundamentally different from the IBM
PC, it lacks GW-BASIC’s graphics, sound, disk-handling, microprocessor-
specific functions, DOS-specific functions, and some keyboard capabilities.

Because the Workstation’s microprocessor has four distinct memory types
instead of the IBM PC’s single type of memory, Series 30/40 BASIC uses XBY,
DBY, CBY, and IBY commands instead of GW-BASIC’s PEEK and POKE
commands.

Variable labels,
arrays,

functions

Because the Workstation supports a much smaller memory, its labels have only
two significant characters while GW-BASIC supports up to 40. Also, Series
30/40 BASIC supports only single-dimension arrays, while GW-BASIC
supports up to 255 dimensions. Finally, Series 30/40 BASIC does not support
the function (FN) capability of GW-BASIC.

Strings Series 30/40 BASIC requires you to specify the maximum length of a string (up
to 254 characters) before you use it; otherwise, its default maximum length is
10. In GW-BASIC, all strings may vary in size up to 255 characters, but when
the string space is full, GW-BASIC pauses to perform “garbage collection.”
Thanks to the Workstation’s pre-defined string lengths, it never has to take time
to collect garbage.

Numbers The numeric variable types available in Series 30/40 BASIC are fewer in
number and different from GW-BASIC’s number types. The Workstation’s
floating point numbers have 8 digits of precision and a range of 10-99 to 1099,
while GW-BASIC’s floating point numbers have 7 digits (single-precision) or
17 digits (double-precision) of precision and a range of 10-38 to 1038. Series
30/40 BASIC supports 17-bit integers that range from -65,535 to +65,535, while
GW-BASIC’s integers are only 16 bits that range from -32,767 to +32,767.

PRINT USING The Workstation’s USING statement offers only a subset of the capabilities of
GW-BASIC’s USING statement. However, because virtually all of the
unsupported features are handy only for accounting-oriented systems, you
probably won’t feel the loss.

Other
differences

Series 30/40 BASIC does not support octal representation of numbers, but its
support for hexadecimal numbers significantly exceeds that of GW-BASIC.
Series 30/40 BASIC’s implementation of the OPEN command is significantly
different, and its storage format for variables means that the VARPTR function
yields significantly different results.

Appendix C

Memory Map

This section shows how BASIC uses the Workstation’s memory. At the end of this section is
an illustration of BASIC’s use of the microprocessor’s memory. In order to understand fully
how this memory map works, you should be familiar with the internal and external memory
capabilities of the 8032 microprocessor and have data sheets for the microprocessor and Optrex
DMC20261NY-LY-NM LCD display.

Note This memory map is provided for your reference only and
is not guaranteed to remain consistent with future firmware
revisions.

Internal RAM DBY Address

00h to 07h

08h
09h

0Ah
0Bh to 0Fh
10h to 17h

 Function

Microprocessor registers

BASIC text pointer (low byte).
Argument stack pointer (low byte; high byte is a
constant).
BASIC text pointer (high byte).
Scratch pad registers.
Microprocessor registers used by XMIT service.

18h to 23h Microprocessor registers used by interrupt service routines.
20h.1 When low, disables all system timer functions except resetting the

watchdog (only during initialization).
20h.2 Indicates that the Flash EPROM contains valid firmware.
20h.3 Toggles every 2.5 milliseconds if the vector at 17Ah is initialized.
20h.4 Unused; reserved for future use.
20h.5 Indicates the system timer is on a one-second tick.
20h.6 to 20h.8 Unused; reserved for future use.
21h.1 Indicates that COM1 has not finished transmitting.
21h.2 Unused; reserved for future use.
21h.3, 21h.4 Current state of the COM1 receiver; 00 = ready; 10 = halted due to

handshaking.
21h.5 Indicates that COM1 needs to transmit an XON.
21h.6 Indicates that COM1 needs to transmit an XOFF.
21h.7 Scratch pad bit.
22h.1 to 22h.6 Unused; reserved for future use.
22h.7 Indicates to various internal routines that the system is inserting a

flashing character into the display buffer.
22h.8 Indicates to the internal line-finding routine that the caller wants to

point to the end of the current program.
23h.1 to 23h.6 Unused; reserved for future use.
23h.7 Indicates when the display is displaying flashing characters as

spaces.
23h.8 Indicates that the display routine should only write the character to

the display buffer without displaying it.

C-2 Series 30/40 BASIC Guide

DBY Address Function
24h.1 Indicates that a programming console is connected and active.
24h.2 Holds status of mode (command/run) bit for error-handler (in case

error-handler doesn’t conclude with a RESUME).
24h.3 Disables echoing of input for INPUT statement.
24h.4 Enables printing LF after CR.
24h.5 Set if an ON ERROR handler is currently executing.
24h.6 to 24h.7 Unused; reserved for future use.
24h.8 Indicates that the STOP statement was executed.
25h.1 Indicates that ON TIME interrupts are enabled.
25h.2 Indicates that an interrupt is in progress.
25h.3 Reserved for future use.
25h.4 Indicates that an ON ERROR statement was executed.
25h.5 Indicates that an ON TIME interrupt is in progress.
25h.6 Indicates ON TIME statement was executed.
25h.7 Unused; reserved for future use.
25h.8 Indicates that the CONT command will work.
26h.1 Indicates that no program changes have occurred (i.e., if reset,

indicates the user changed the program, which causes BASIC to
clear all variables).

26h.2 Indicates that BASIC is in the middle of executing an SDIM
statement.

26h.3 Indicates that the internal error-processing routine is busy (in order
to inhibit asynchronous communications errors during error
processing).

26h.4 Scratch pad bit used by floating-point math routines.
26h.5 Indicates to the expression evaluator that the argument stack has at

least one value.
26h.6 Set when RETI executed; cleared during its processing.
26h.7 Indicates to the expression evaluator that an integer argument is on

the stack (only if the next bit is zero).
26h.8 Indicates to the expression evaluator that a string argument is on the

stack.
27h.1 Forces PRINT statement to use the display regardless of the

communication port configuration; used internally for displaying
messages on the screen (e.g., error messages).

27h.2 Enables program tracing (set by TRON, reset by TROFF).
27h.3 Indicates that a STR$ statement is in progress.
27h.4 Indicates that the Workstation is in the Command (or direct) mode;

when reset, indicates that a program is running.
27h.5 Unused; reserved for future use.
27h.6 Indicates to an internal routine that it is printing a message stored in

firmware.
27h.7 Indicates that PRINT should not print leading zeroes for a hex print

(i.e., PH0. executed).
27h.8 Indicates that PH0. or PH1. was executed and that PRINT should

print in hex mode.
28h to 29h Reserved.
2Ah to 3Dh Floating point temporaries.
3Eh Unused; reserved for future use.
3Fh Scratch byte

Memory Map C-3

DBY Address Function
40h Milliseconds counter (5 msec resolution); free-running.
41h Milliseconds counter (5 msec resolution); corresponds to fractional

value of BASIC’s TIME variable.
42h Scan counter (5 msec/scan) for reading keyboard every 50

milliseconds; essentially a down counter that starts at 10 and
decrements every 5 milliseconds.

43h Scan counter (5 msec/scan) for duration of keyboard beep.
44h, 45h Unused; reserved for future use.
46h.1 Keyboard buffer overflow error.
46h.2 Keyboard fault (invalid combination of two or more keys detected).
46h.3 to 46h.5 Unused; reserved for future use.
46h.6 [F1]-[↵] combination detected.
46h.7 Indicates that the input timer for keyboard has timed out.
46h.8 At least one character is available in the keyboard buffer.
47h Run-time copy of selected configuration parameters for COM1:
47h.1 XON/XOFF handshaking enabled on COM1 transmit.
47h.2 XON/XOFF handshaking enabled on COM1 receive.
47h.3 Parity and parity substitution enabled on COM1.
47h.4 Even parity selected on COM1.
47h.5 Buffered communications enabled on COM1.
47h.6 RTS for receive handshake enabled on COM1.
47h.7 [Ctrl]-C interrupts enabled on COM1.
47h.8 7-bit data size selected on COM1.
48h.1 COM1 receive buffer overflowed.
48h.2 Always 0.
48h.3 COM1 received parity error.
48h.4 Always 0.
48h.5 Always 0.
48h.6 COM1 received a [Ctrl]-C.
48h.7 COM1 input timer timed out.
48h.8 COM1 receive buffer not empty.
49h.1 COM1 CTS input tested and not asserted.
49h.2 XOFF received on COM1.
49h.3 to 49h.6 Reserved for future use.
49h.7 COM1 transmit buffer full.
49h.8 COM1 transmit handshaking timeout was already reported.
4Ah to 50h Unused; reserved for future use.
51h Fractional part of ON TIME setpoint (equals fractional part * 5).
52h, 53h Pointer to program is saved here in case CONT executed (high byte,

low byte).
54h Internal pointer for string expression evaluation.
55h, 56h Temporaries for transcendental functions.
57h, 58h Whole portion of ON TIME setpoint (high byte, low byte).

READ text pointer (low byte)
5Ah Control stack pointer (low byte; high byte is
a constant)

5Bh READ text pointer (high byte)

C-4 Series 30/40 BASIC Guide

DBY Address Function
5Ch Local/global printer port; if the high bit is set, the low nibble is a

local printer port selection and the high nibble is the global printer
port selection; the port number varies between 0 and 4.

5Dh PRINT USING format information.
5Eh Local/global input port; if the high bit is set, the low nibble is a local

input port selection and the high nibble is the global input port
selection; the port number varies between 0 and 4.

5Fh to 60h Start of current program (high byte, low byte).
61h to FFh Microprocessor stack.

Memory Map C-5

Special Function
Registers

DBY Address
80h
81h

 Function
Port 0.
Stack pointer.

82h, 83h Data Pointer (low byte, high byte).
87h Power control; bits 1-7 are reserved for future use; bit 8 doubles

baud rate when Timer 1 is the baud rate generator.
88h TCON; Timer/Counter Control Register.
88h.1 Interrupt 0 trigger: 1 selects falling edge, 0 selects low level

(default = 0).
88h.2 Interrupt 0 edge flag; set when interrupt detected, cleared when

serviced.
88h.3 Interrupt 1 trigger: 1 selects falling edge, 0 selects low level

(default = 0).
88h.4 Interrupt 1 edge flag; set when interrupt detected, cleared when

serviced.
88h.5 Timer 0 enable: 1 selects run, 0 selects stop (default = 0).
88h.6 Timer 0 overflow flag; set on overflow, cleared when serviced.
88h.7 Timer 1 enable: 1 selects run, 0 selects stop (default = 1).
88h.8 Timer 1 overflow flag; set on overflow, cleared when serviced.
89h TMOD; Timer/Counter Mode Control Register.
89h.1, 89h.2 If 00, TL0 is a 5-bit prescaler (13-bit 8048 mode); if 01, TL0 and

TH0 are cascaded; if 10, TL0 is an 8-bit auto-reload timer and TH0
is its value; if 11, TL0 is an 8-bit timer controlled by Timer 0 bits
while TH0 is an 8-bit timer controlled by Timer 1 control bits. The
default setting is 01, which makes Timer 0 a 16-bit timer; Timer 0
serves the TONE command.

89h.3 Selects counter mode if set, timer mode if reset (default = reset).
89h.4 If reset, Timer 0 is controlled by bit 88h.5; if set, Timer 0 is

controlled by a combination of bit 88h.5 and the active condition of
the interrupt 0 input (pin INT0) (default = reset).

89h.5, 89h.6 If 00, TL1 is a 5-bit prescaler (13-bit 8048 mode); if 01, TL1 and
TH1 are cascaded; if 10, TL1 is an 8-bit auto-reload timer and TH1
is its value; if 11, Timer 1 is stopped. The default setting is 00,
which makes Timer 1 a 13-bit timer; Timer 1 is the baud rate
generator for COM1.

89h.7 Selects counter mode if set, timer mode if reset (default = reset).
89h.8 If reset, Timer 1 is controlled by bit 88h.7; if set, Timer 1 is

controlled by a combination of bit 88h.7 and the active condition of
the interrupt 1 input (pin INT1) (default = reset).

8Ah, 8Ch Timer 0 setpoint (low byte, high byte).
8Bh, 8Dh Timer 1 setpoint (low byte, high byte); this varies depending on the

baud rate of COM1.

C-6 Series 30/40 BASIC Guide

DBY Address Function
90h PORT 1.
90h.1 Selects low half of 128K Flash EPROM (active low); when this bit is

high, the upper half of a 128K Flash EPROM is selected. 128K
Flash EPROM is available as an option.

90h.2 Selects lower 32K of currently selected half of Flash EPROM; this is
useful only when programming the Flash.

90h.3 Disable Flash EPROM programming (active low); when this bit is
low, the 32K block of data memory from 0 to 7FFFh is re-mapped to
the same addresses in code memory, while one of the four 32K
blocks of code memory is re-mapped to data memory starting at
8000h; the code block is selected with bits 90h.1 and 90h.2.

90h.4 COM1 RTS output (active low).
90h.5 Keyboard column select.
90h.6 Keyboard column select.
90h.7 Keyboard column select.
90h.8 Keyboard column select.
98h SCON; Serial Port Control Register.
98h.1 COM1’s receive interrupt flag; set by hardware when a character is

received and cleared by software when the interrupt is serviced.
98h.2 COM1’s transmit interrupt flag; set by hardware when a character is

sent and cleared by software when the interrupt is serviced.
98h.3 Holds the 9th bit received in mode 2 or 3 (bits 98h.7 and 98h.8 set to

10 or 11) (default = unused); only used if configured for 8,N,2; 8,O;
8,E; 7,O,2; or 7,E,2.

98h.4 Holds the 9th bit to be transmitted in mode 2 or 3 (bits 98h.7 and
98h.8 set to 10 or 11) (default = unused); only used if configured for
8,N,2; 8,O; 8,E; 7,O,2; or 7,E,2.

98h.5 Receive enable (default = set).
98h.6 Enables multiprocessor communications (default = reset).
98h.7, 98h.8 If 00, serial port operates as a shift register at the one-twelfth of the

oscillator’s frequency (11.0592/12 MHz); if 01, operates as an 8-bit
serial port with a variable frequency using Timer 1 or Timer 2; if 10,
operates as a 9-bit serial port at 1/32 or 1/64 of the oscillator’s
frequency; if 11, operates as a 9-bit serial port using Timer 1 or
Timer 2. The default is 01, which means that the COM1 port
operates as a simple 8-bit serial port; Timer 1 generates the baud
rate for the COM1 port.

99h Serial data buffer; received data is read from this byte and
transmitted data is written to this byte.

A0h PORT 2.
A8h IE; Interrupt Enable Register.
A8h.1 Enables external interrupt 0 (default = disabled); because

COM1_CTS is tied to the input for external interrupt 0, interrupts
are enabled only when CS handshaking is enabled.

A8h.2 Enables Timer 0 interrupt (default = disabled; enabled when TONE
or BEEP statement is in progress).

A8h.3 Enables external interrupt 1 (default = enabled; this interrupt comes
from the VLSI 16C452 communications chip that handles COM2,
COM3, and LPT1).

A8h.4 Enables Timer 1 interrupt (default = disabled because Timer 1 is the
baud rate generator for the COM1 serial port).

Memory Map C-7

DBY Address Function
A8h.5 Enables the COM1 serial port interrupt (default = enabled).
A8h.6 Enables Timer 2 interrupt (default = enabled).
A8h.7 Reserved.
A8h.8 Master Interrupt Enable (default = enabled).
B0h PORT 3.
B0h.1 COM1’s receive line.
B0h.2 COM1’s transmit line.
B0h.3 Interrupt 0 input; COM1’s CTS input.
B0h.4 Keyboard row read.
B0h.5 Keyboard row read.
B0h.6 Keyboard row read.
B0h.7 Microprocessor’s write line to external memory.
B0h.8 Microprocessor’s read line to external memory.
B8h IP; Interrupt Priority Register.
B8h.1 High interrupt priority select for external interrupt 0 (default = low),

which is COM1’s CTS input.
B8h.2 High interrupt priority select for Timer 0 interrupt (default = high),

which is used when beeping the horn.
B8h.3 High interrupt priority select for external interrupt 1 (default = low),

which is used for COM2, COM3, and LPT1.
B8h.4 High interrupt priority select for Timer 1 interrupt (default = low),

which is used as the COM1 baud rate generator.
B8h.5 High interrupt priority select for COM1 serial port interrupt

(default = low).
B8h.6 High interrupt priority select for Timer 2 interrupt (default = low),

which is used as the system timer.
B8h.7 Reserved for future use.
B8h.8 Reserved for future use.
C8h T2CON; Timer/Counter 2 Control Register.
C8h.1 When set, enables captures on negative transitions at microprocessor

pin T2EX; when reset, auto-reloads occur either with Timer 2
overflows or negative transitions at T2EX when bit C8h.4 is set.
When either bit C8h.5 or C8h.6 is on, the setting of bit C8h.1
doesn’t matter and the timer does an auto-reload on overflow. The
default is reset in order to cause an auto-reload; this helps the
background interrupts occur at 5-millisecond periods with no
accumulation of error (except that caused by the oscillator’s
frequency).

C8h.2 Enables Timer 2 to operate as an external event counter; if reset,
Timer 2 operates as a timer (default = reset).

C8h.3 Enables Timer 2 to run (default = enabled).
C8h.4 Enables events at T2EX pin (if unused for serial port) (default =

disabled).
C8h.5 Enables using Timer 2 for the COM1 port’s baud rate generator

when transmitting (default = disabled).
C8h.6 Enables using Timer 2 for the COM1 port’s baud rate generator

when receiving (default = disabled).
C8h.7 If bit C8h.4 is high, then bit C8h.7 is set by hardware when a

capture or reload occurs on a negative transition of T2EX;
otherwise, if this bit is set the microprocessor vectors to the Timer 2
interrupt service routine (default = reset).

C-8 Series 30/40 BASIC Guide

DBY Address Function
C8h.8 Timer 2 overflow flag; set by hardware when Timer 2 overflows,

provided bits C8h.5 and C8h.6 are reset.
CAh, CBh Timer 2 setpoint (default = EE00h to generate an interrupt every 5

milliseconds) (low byte, high byte).
CCh, CDh Timer 2 current value (low byte, high byte).
D0h Microprocessor’s Processor Status Word (PSW):
D0h.1 Microprocessor’s parity flag.
D0h.2 Reserved for future use.
D0h.3 Microprocessor’s overflow flag.
D0h.4, D0h.5 Register bank select bits; 00 = low bank, 01 = 2nd bank, 10 = 3rd

bank, 11 = 4th bank.
D0h.6 Scratch pad flag.
D0h.7 Microprocessor’s auxiliary carry flag.
D0h.8 Microprocessor’s carry flag.
E0h Microprocessor’s accumulator.
F0h Microprocessor’s “B” register.

External RAM XBY Address
00h to 04h

Function
Firmware signature; BASIC’s signature is 15h 32h
71h 24h A5h; if the signature doesn’t match, BASIC
clears the REACT status, sets the console to port 1,
and resets all port configuration parameters to their
defaults.

05h Status of LED control register (because the hardware register is
write-only).

06h, 07h RAM size; 0 = faulty; 7FFFh = 32K; F7FFh = 64K.
08h Flash EPROM status; 0 = faulty; 80h = 64K; 81h = 128K.
09h Unused; reserved for future use.
0Ah Unused; reserved for future use.
0Bh Display status; 0 = faulty; 1 = okay.
0Ch Always 0.
0Dh Always 0.
0Eh Always 0.
0Fh Always 0.
10h Always 0.
11h RAM signature, which should be 82h 59h 66h 24h; if the signature

doesn’t match, BIOS performs destructive tests on RAM, resets all
port configuration parameters to their defaults; and initializes all
hardware.

15h,16h Unused; reserved for future use.
17h to 19h Hours, minutes, and seconds for the time of day; these bytes are

BCD, not binary!
1Ah to 1Ch Day, month, and year for the date; these bytes are BCD, not binary!
1Dh ASCII code for the date separation character; for example, BASIC

sets up this character as “/”, which is an ASCII code of 2Fh.
1Eh Date is input and displayed in the international format if this byte is

not zero.
1Fh Alias for COM5, the “memory” port (not accessible from BASIC).
20h, 21h Address pointer for the memory port; points to the next available

byte where the transmit routine will send the byte.
22h Alias for the console port.

Memory Map C-9

XBY Address Function
23h Control byte for the keyboard:
23h.1 Unused; reserved for future use.
23h.2 Auto-repeat enable.
23h.3 to 23h.4 Unused; reserved for future use.
23h.5 Buffer enable.
23h.6 [F1]-[↵] enable.
23h.7 to 23h.8 Unused; reserved for future use.
24h Input timer setpoint.
25h Duration of keypress beep (50 msec resolution).
26h, 27h Reload value for beep timer; BASIC writes the number stored here

into the bytes at DBY(8Ah) and DBY(8Ch), which is the Timer 0
register.

28h Time delay until the first key repeat (50 msec resolution).
29h Time delay between repeats (50 msec resolution).
2Ah High byte of the page in external memory used for re-mapping the

keyboard’s ASCII codes. Currently, no configuration bit exists to
enable this capability.

2Bh Control byte for the display:
2Bh.1 Unused; reserved for future use.
2Bh.2 IBM PC-compatible map enable.
2Bh.3 Unused; reserved for future use.
2Bh.4 Enable for automatic carriage return at end of line.
2Bh.5 Enable for automatic carriage return/line feed at end of line.
2Bh.6 Scroll enable.
2Bh.7 Wraparound enable.
2Bh.8 Display re-map enable.
2Ch to 2Eh Unused; reserved for future use.
2Fh Cursor type; bits 1 and 2 select the type: 00 = undefined, 01 = solid

block; 10 = underline; 11 = undefined; bits 3 through 7 have no
function; bit 8 is the cursor enable.

30/40h Unused; reserved for future use.
31h Unused; reserved for future use.
32h High byte of the page in external memory used for re-mapping the

display’s ASCII codes before sending them to the display.
33h COM1 alias.
34h ASCII code for the character used to replaced those with parity

errors received on COM1.
35h COM1 configuration parameters; byte 1:
35h.1, 35h.2 COM1 data size: 00 = undefined; 01 = 7 bits; 10 = undefined; 11 =

8 bits.
35h.3 COM1 stop bits; 0 = 1 stop bit; 1 = 2 stop bits.
35h.4, 35h.5 COM1 parity; 00 = none; 01 = odd; 11 = even.
35h.6 to 35h.8 COM1 baud rate; 000 = 110; 001 = 30/400; 010 = 600; 011 = 1200;

100 = 2400; 101 = 4800; 110 = 9600; 111 = 19200.
36h COM1 configuration parameters; byte 2:
36h.1 Parity translate enable.
36h.2 Buffer enable.
36h.3 [Ctrl]-C enable.
36h.4, 36h.5 Reserved for future use as DTR handshaking line control; always 0.

C-10 Series 30/40 BASIC Guide

XBY Address Function
36h.6 CTS handshake enable.
36h.7 Reserved for future use as CD handshake line enable; always 0.
36h.8 Reserved for future use.
37h COM1 configuration parameters; byte 3:
37h.1 XON/XOFF handshaking enabled on transmit.
37h.2 XON/XOFF handshaking enabled on receive.
37h.3 RTS always on.
37h.4 RTS on at the start of transmitting.
37h.5 RTS on only during transmitting.
37h.6 RTS receive handshake enable.
37h.7 Reserved for future use.
37h.8 Reserved for future use.
38h Setpoint for the timer for CTS or XON/XOFF handshaking on

COM1 transmit.
39h Setpoint for the timer for XON/XOFF handshaking on COM1

receive.
3Ah to 4Ah Unused; reserved for future use.
4Bh Station number for monitor protocol.
4Ch to 51h Time and date of last power-up.
52h, 53h Total quantity of power-ups since the last firmware download.
54h to 63h Unused; reserved for future use.
64h to 69h Time and date of last download.
6Ah, 6Bh Total quantity of firmware downloads since the beginning of time.
6Ch to 71h Time and date of last reset of the remaining diagnostic records.
72h, 73h Total quantity of diagnostic resets.
74h to 79h Time and date of last receive overflow error on COM1.
7Ah, 7Bh Total quantity of receive overflow errors on COM1.
7Ch to 81h Time and date of last receive overrun error on COM1.
82h, 83h Total quantity of receive overrun errors on COM1.
84h to 89h Time and date of last parity error on COM1.
8Ah, 8Bh Total quantity of parity errors on COM1.
8Ch to 91h Time and date of last framing error on COM1.
92h, 93h Total quantity of framing errors on COM1.
94h to D3h Unused; reserved for future use.
D4h to D9h Time and date of last keyboard buffer overflow error.
DAh, DBh Total quantity of keyboard buffer overflow errors.
DCh Reset source:
DCh.1 Power up.
DCh.2 Reserved; always 0.
DCh.3 Reserved; always 0.
DCh.4 Software.
DCh.5 First time.
DCh.6 to DCh.8 Undefined.
DDh to E4h Reserved.
E5h If set to 47h, enables internal flash access routines to reference

routines downloaded to RAM instead.
E6h, E7h Address of RAM-based flash write routine.
E8h, E9h Address of RAM-based flash erase routine.
XBY Address Function

Memory Map C-11

EAh, EBh Address of RAM-based flash test routine.
ECh Internal timer to service display (5 msec resolution).
EDh Actual value of keyboard auto-repeat timer.
EEh “Raw” code of the key held down on the previous scan of the

keyboard; FFh indicates no key pressed; used for key debouncing.
EFh “Raw” code of the key held down on this scan; FFh indicates no key

pressed.
F0h “Raw” code of the last keypress recognized; used for auto-repeat

sensing.
F1h Unused; reserved for future use.
F2h Keyboard “head” pointer; increments when a character is removed

from the keyboard buffer.
F3h Keyboard “tail” pointer; increments when a key is inserted to the

keyboard buffer.
F4h Current row position of cursor (0 to 3).
F5h Current column position of cursor (0 to 19).
F6h to F7h Unused; reserved for future use.
F8h COM1 receive “head” pointer; increments when the system removes

a character from the receive buffer.
F9h COM1 receive “tail” pointer; increments when the service routine

receives a character from the port and adds it to the receive buffer.
FAh COM1 transmit “head” pointer; increments when the service routine

removes a character from the buffer and sends it out the port.
FBh COM1 transmit “tail” pointer; increments when the system adds a

character to the transmit buffer.
FCh to FFh Unused; reserved for future use.
100h to 127h Display buffer; holds an image of the characters currently displayed.
128h to 155h Unused; reserved for future use.
156h Actual value of monitor’s timer for user entries (1 second

resolution).
157h Actual value of monitor’s timer for character times (50 msec

resolution).
158h Actual value of keyboard input timer.
159h Actual value of COM1 transmit handshake timer.
15Ah Actual value of COM1 receive handshake timer.
15Bh to 15Fh Unused; reserved for future use.
160h to 171h Reserved for internal use.
172h to 177h Map of actual hardware port numbers for each alias.
178h to 179h Unused; reserved for future use.
17Ah to 17Dh Vector for firmware routine to be driven by the system timer service

routine every five milliseconds. The first byte is 28h; the second
bytes are the high and low byte of the vector; the last byte is an
exclusive OR checksum of the vector’s two bytes.

17Eh to 17Fh 16-bit seconds counter (high byte, low byte).
180h to 1CFh Flash enables for each character displayed; 0 = no flash; 80h = flash.
1D0h Workstation’s model number; lower two digits stored in BCD format

(30/40h = normal Workstation; 31h = 128K Flash EPROM).
1D1h to 1FFh Reserved for future use; contact Nematron if you want to reserve any

of this area for your own application.

C-12 Series 30/40 BASIC Guide

XBY Address Function
200h to 2FFh COM1 receive buffer.
30/400h to 3FFh COM1 transmit buffer.
400h to 8FFh Unused; reserved for future use.
900h to 9FFh Keyboard buffer.
A00h to BFFh Reserved for internal use.
C00h to C14h Floating-point work area.

Set by REACT if “R” to auto-start program.
C15h.3 Set by REACT if “P” to protect program by
locking it in the run mode.

C16h Console port number (default = 1).
C17h, C18h MTOP; highest address + 1 used by the program; if no buffers for

communications, MTOP equals VARTOP (high byte, low byte).
C19h Program memory type for REACT command; high bit set if ROM;

clear if RAM.
C1Ah REACT command’s program number.
C1Bh ROM type; 0 = none; 1 = EEPROM; 2 = EPROM; 3 = Flash
C1Ch, C1Dh Maximum RAM location available to program and variables.
C1Eh, C1Fh Unused; reserved for future use.
C20h Length of current program line.
C21h, C22h Line number of current program line (after entering or editing).
C23h Maximum line length (for current output port).
C24h, C25h Pointer to address of current line length (for current output port).
C26h, C27h Line number where error occurred.
C28h, C29h Starting address within code memory where error message is stored.
C2Ah Unused; reserved for future use.
C2Bh Saved input port (when going to error handler).
C2Ch Saved output port (when going to error handler).
C2Dh to C44h Communication parameter storage table. Each port uses four bytes:

the first byte is a flag byte, where the low bit is “echo disable” and
the second bit is “line feed after carriage return enable”; the second
byte is the maximum line length; the third byte is the current line
length; and the fourth byte is unused. The parameters for each port
follow consecutively for COM0, COM1, COM2, COM3, LPT1, and
a spare.

C45h, C46h Pointer to the display’s current line length (in case the display is
opened with an alias).

C47h, C48h Saved text pointer when the last error occurred.
C49h Current program number.
C4Ah to CFFh Control stack (used by FOR, DO, and GOSUB).
D00h Error code.
D01h, D02h Line number of ON ERROR handler (high byte, low byte).
D03h, D04h VARTOP; top of scalar variable storage (i.e., highest address of the

area where scalar variables are stored; variable storage begins at the
highest address and works down) (high byte, low byte).

D05h, D06h VARUSE; bottom of scalar variable storage (high byte, low byte).
D07h, D08h DIMUSE; top of array variable storage (i.e., highest address of the

area where array variables are stored; storage begins at the end of
the program and works up) (high byte, low byte).

D09h, D0Ah Random number seed.
D0Bh, D0Ch Current value of VAD (high byte, low byte).

Memory Map C-13

XBY Address Function
D0Dh Default string length plus 1 (if not otherwise assigned with SDIM).
D0Eh, D0Fh Text pointer of ON ERROR line (in case it refers to a line number

that doesn’t exist).
D10h to D15h Floating point temporary result.
D16h to D1Bh Floating point temporary result.
D1Ch, D1Dh Reserved for future use.
D1Eh, D1Fh Line number of ON TIME handler (high byte, low byte).
D20h Global PRINT USING format.
D21h to DFFh Argument stack.
E00h to EFFh Buffer for string manipulations.
F00h to FFFh Input buffer for INPUT statement.
1000h to MTOP Program, array variables, free space, and scalar variables (in that

order).
1000h Start of first program. The header consists of four bytes; the first

byte, which indicates the presence of a valid program, is 0FAh. The
second byte is 28h if the checksum should be valid; if it is not 28h,
which happens after the user has changed a line, then the next RUN,
GOTO, or GOSUB re-calculates and stores the checksum. The third
and fourth bytes are the checksum.
The rest of the program consists of its lines. Each line starts with a
one-byte line length; the next two bytes are the line number (high
byte, low byte); the remaining bytes up to the last is the program line
itself. Each line ends in a carriage return (decimal code 13). The
last line of the program has a length byte of 1 followed by a carriage
return. If a program follows, the byte following the last line’s
carriage return is 0FAh.

Memory-Mapped I/O XBY Address
800h
8001h

 Function
 Display’s command register (for writing only).
Display’s data register (for writing only).

8002h Display’s command register (for reading only).
8003h Display’s data register (for reading only).

C-14 Series 30/40 BASIC Guide

A
00

0h

FF
FF

h

Fl
as

h
E

P
R

O
M

(2

00
0h

 to
 F

FF
Fh

)

U
se

r p
ro

gr
am

 (w
he

n
co

pi
ed

 to
 R

O
M

)

Fr
ee

 s
pa

ce
 (n

ot
 u

se
d

by

us
er

 p
ro

gr
am

)

10
00

h
FF

Fh

F0
0h

E

FF
h

E
00

h
D

FF
h

B
A

S
IC

 a
nd

 B
IO

S
 m

em
or

y

7F
FF

h

S
tri

ng
 o

pe
ra

tio
n

bu
ffe

r

IN
P

U
T

bu
ffe

r

U
se

r p
ro

gr
am

 (w
he

n
ed

iti
ng

)

A
rr

ay
s

an
d

st
rin

gs

Fr
ee

 s
pa

ce

S
ca

la
r v

ar
ia

bl
es

V
A

R
TO

P

(=
 M

TO
P

)
V

A
R

U
S

E

D
IM

U
S

E

Fr
ee

 s
pa

ce
 (i

f M
TO

P
 is

 s
et

lo

w
er

 th
an

 it
s

de
fa

ul
t v

al
ue

)

0
A

cc
es

se
d

by
 C

B
Y

(x
)

M
O

V
C

 A
, @

A
+D

P
TR

M

O
V

C
 A

, @
A

+P
C

(D
ow

nl
oa

da
bl

e
fir

m
w

ar
e)

0

80
h

7F
h

FF
h

80
h

FF
h

A
cc

es
se

d
by

IB

Y
(x

)
M

O
V

 R
0,

80
H

M

O
V

 A
,@

R
0

S
P

E
C

IA
L

FU
N

C
TI

O
N

R

E
G

IS
TE

R
S

IN
TE

R
N

A
L

R
A

M

(B

A
S

IC
 a

nd
 B

IO
S

sc

ra
tc

h
pa

d)

A
cc

es
se

d
by

D

B
Y

(x
)

M
O

V
 A

,7
0

IN
D

IR
E

C
T

R
A

M

20
00

h
1F

FF
h

M
ic

ro
pr

oc
es

so
r R

O
M

(F
irm

w
ar

e)

E
X

TE
R

N
A

L
R

A
M

(0

 to
 7

FF
Fh

)

M
E

M
O

R
Y

-M
A

P
P

E
D

 I/
O

(D

is
pl

ay
 =

 8
00

0h
)

A
cc

es
se

d
by

 X
B

Y
(x

)
M

O
V

X
 A

, @
D

P
TR

M

O
V

X
 A

,@
R

0

0

80
00

h

Appendix D

Reference

Command Summary

Command Description Examples

ABS(expr) Returns the absolute value. X = ABS(–5) + ABS(6*(–5))

expr1 AND expr2 Returns the logical AND. X = A AND 3

ASC(sexpr) Returns ASCII value of first character or X = ASC(“A”) : PRINT ASC(A$,2)
ASC(sexpr,iexpr) character at position iexpr of string sexpr.

ATN(expr) Returns the arctangent. X = ATN(A)

BEEP Not available on the Series 30/40 Workstations.

BIT(expr, bit#) Reads from or writes to a bit in an integer. A = 9 : X = BIT(A,2) : REM X = 0
BIT(var, bit#) X = BIT(A,4) = 1 : REM X = 4

CALL iexpr Branches to built-in routine or machine CALL 13
language subroutine.

CBY(iexpr) Retrieves a byte from program memory. X = CBY(1000)

CHR$(iexpr) Returns 1-character string of ASCII iexpr. A$ = CHR$(64) : PRINT B$,A$

CLEAR Clears all variables. CLEAR

CLOCK 0 CLOCK0 disables ON TIME interrupts; CLOCK 0
CLOCK 1 CLOCK1 resets the TIME variable to zero. CLOCK 1

CLS Clears the display; homes the cursor. CLS

CONT Resumes execution after program aborted. CONT

COPY iexpr1,iexpr2,iexpr3 Copies iexpr3 bytes of external memory COPY 4000,X,21
from iexpr1 to iexpr2.

COS(expr) Returns the cosine. X = COS(A/PI)

CR Transmits carriage return without line feed. PRINT expr, CR;

CSRLIN Returns current line occupied by cursor. X = CSRLIN

DATA const {,const} Holds data in program for READ. DATA 34, 23 : DATA “AA”,“ER”

DATE$ Returns or sets the date (“mm/dd/yy”). DATE$=“12/23/89”

DBY(iexpr) Reads or writes to internal RAM or special X = DBY(35)
function register.

D-2 Series 30/40 BASIC Guide

Command Description Examples

DEL iexpr1,iexpr2 Deletes lines iexpr1 through iexpr2. DEL 30: DEL 10,40

DEL RAM {prog} Deletes all programs or program prog. DEL RAM 2 : DEL RAM

DIM nvar (iexpr) Declares the size of an array variable; for DIM A(30) : DIM X(25),Y(30)
DIM svar(iexpr,iexpr2) strings, iexpr2 is the length of each string.

DIR Prints a directory of all programs in memory. DIR

DO : UNTIL expr Loops until expr is true (not zero). DO : UNTIL X=5

DO : WHILE expr Loops while expr is true (not zero). DO : WHILE A<8

DUMP iexpr1, iexpr2 Prints external memory in hex format from DUMP 400h,100
address iexpr1 to address iexpr1 + iexpr2.

END Terminates program execution. END

ERR After error, contains error code. PRINT ERR

ERL After error, contains error line number. X = ERL

EXP(expr) Returns “e” raised to the power of expr. X = EXP(12) : REM X = 162754.77

FOR var = start TO stop Loops a specified number of times. FOR I = 1 TO 3 : NEXT
 {STEP incr} : NEXT FOR X = A TO B STEP –1 : NEXT

FREE Returns number of bytes available. FREE

GOSUB line# Branches to subroutine at line#. GOSUB 500 : GOSUB 1000

GOTO line# Continues program execution at line#. GOTO 40 : GOTO 100

HEX$(expr) Converts to a string in hex format. A$ = HEX$(165) : REM A$ = “00A5”

HVAL(sexpr) Returns the numeric value of sexpr X = HVAL(“FF”) : REM X = 255
(assumed to be a hex number).

IBY(expr) Reads/writes indirect internal RAM. PRINT IBY(108)

IF expr {THEN} statement1 If expr ? 0, performs statement1, IF
X=25 THEN Y=12 ELSE Y=50
{ELSE statement2} otherwise, performs statement2. IF Y > 22 THEN GOSUB 25

IN# iexpr Switches input to port iexpr. IN#0

INKEY$ {#port} Returns a character, if available, from A$ = INKEY$: B$ = INKEY$ #0
the current input port or from port.

INPUT prompt,var Requests entry to var. INPUT “Enter number”,A

INPUT #port, var Performs an INPUT from port. INPUT #0, B

INPUT$(iexpr{,#port}) Requests entry of length iexpr from port. A$ = INPUT$(7) : B$ = INPUT$(0,#1)

INSTR({iexpr}, s1,s2) Returns position of string s2 within string X = INSTR(A$,B$)
s1 (starting at position iexpr of s1).

INT(expr) Returns largest whole number ≤ expr. X = INT(12.8) : REM X = 12

INV(expr) Returns 0 if expr ? 0; returns 1 if expr = 0. X = INV(A)

IOE Not available on the Series 30/40 Workstations.

Reference D-3

Command Description Examples

LD@ iexpr,var{,var} Retrieves data from address iexpr and LD@ 8163,A$,X
stores it in var.

LED Not available on the Series 30/40 Workstations.

LEFT$(sexpr,iexpr) Returns a string from the left of sexpr with A$ = LEFT$(A$,4)
a length of iexpr.

LEN(sexpr) Returns number of characters in sexpr. X = LEN(B$)

LET var = expr Optional form of var = expr. LET A = 5 : LET A = SQR(B)

LIST {#port,} begin#,end# Lists all or part of a program. LIST : LIST #1,40,200 : LIST ,40

LOCATE r,c,t Positions cursor at row r, column c, with LOCATE 2,2,2 : LOCATE ,4
cursor type t (0=none; 1=box; 2=underline).

LOG(expr) Returns the natural logarithm. X = LOG(34.55) : REM X = 3.542407

MID$(sexpr,iexpr1,iexpr2) Returns a new string, consisting of a J$=MID$(“IWS10”,2,2):REM
J$=“WS” partial copy of sexpr starting at position

iexpr1 with a length of iexpr2.

MID$(svar,iexpr1{,iexpr2}) Places a string within svar starting at position A$ = “IPT” : MID$(A$,2) =“WS”
iexpr1 and continuing for a length of iexpr2. REM A$ = “IWS”

MTOP Returns or sets the top of memory. MTOP = 7138 : PRINT MTOP

NEW Deletes program and clears all variables. NEW

NOT(expr) Returns 16-bit 1’s complement. X = NOT(23) : REM X = 65512

ON ERROR GOTO line# Enables error handling routine. ON ERROR GOTO 700

ON ex GOSUB line#, line# Selects subroutine number ex and calls it. ON A GOSUB 100, 200, 300
(gosub 100 if A = 0, 200 if A = 1, etc.)

ON expr GOTO line#, line# Selects line number expr and goes to it. ON A GOTO 100, 200, 300
(goto 100 if A = 0, 200 if A = 1, etc.)

ON TIME=ex GOSUB line# Sets up time-based interrupt handler to call ON TIME = 5 GOSUB 100
the subroutine at line# when TIME ≥ ex.

D-4 Series 30/40 BASIC Guide

Command Description Examples

OPEN "port: rate, parity,
data bits, stop bits,
parameters" AS #ex

Declares communication port’s
parameters:

port = COM0 (display) or COM1

rate =
110,30/400,600,1200,2400,4800,9600 or
19200

parity = N (none); O (odd); E (even)

data bits = 7 or 8

stop bits = 1 or 2

parameters =

Rx Enable auto-repeat and set delay to x
Enable [Ctrl]-C interrupt
Enable automatic carriage return/line feed
on screen
Enable automatic carriage return on
screen

x Wait for CTS before transmitting
Disable echo during input
Receive and transmit via buffers
Enable IBM PC-compatible ASCII codes
Send line feed after carriage return

x Set line length to x
x Set parity substitution character to an

ASCII code of x
Dx Set auto-repeat rate to x

Assert RTS when receive buffer empty
N Don’t assert RTS at all
O Assert RTS at start of transmitting

Assert RTS when transmitting
X Use XON/XOFF when receiving

Enable screen scrolling
x Wait for input for a specified time
x Use XON/XOFF when transmitting

A Enable screen wraparound

OPEN "COM1:110, N, 8, 1,TX"

OPEN "COM1:IB,ED,TD30/40"

OPEN "COM0:IB,CE,LF,CL,SC"

expr OR expr Returns the logical OR. C = A OR B OR C OR D

PH0. {#port,} {expr} Same as PRINT but prints expr in 2-digit hex. PH0. XBY(0E012h)

PH1. {#port,} {expr} Same as PRINT but prints expr in 4-digit hex. PH1. 1234

PI Equals 3.1415926. X = PI

PLEN Returns the length (in bytes) of program. PRINT PLEN

POP var Sets var to data at top of argument stack. CALL 40 : POP X

POS Returns current column number occupied by X = POS
cursor.

PR# iexpr Switches output to port iexpr. PR#0 : PR#1

PRINT {#iexpr,} {expr} Prints expr to port iexpr. PRINT : PRINT A*B : PRINT “Hi”
PRINT #1, E, U, PLEN

Reference D-5

Command Description Examples

PRINT USING sexpr Sets up format of printed numbers. PRINT USING “##” : PRINT USING I$

PUSH expr Places expr on top of argument stack. PUSH 1 : CALL 21

RAM prog Selects program prog as the current program. RAM 1 : RAM 2

RAM prog1 = RAM prog2 Inserts a copy of program prog2 before RAM 2 = RAM 5
prog1.

REACT {par} {,par} Specifies start-up action after reset. REACT B : REACT R, M, N
none = deselects all options. REACT RAM 1
R = run program 1 after reset.
P = protect program by locking it in run mode.
Cx = set console to port x

READ var {,var} Reads DATA value and assigns to var. READ A, B : READ A(I)

REM remark Indicates remark is a comment. REM This is a comment.

RENUM {new}{,inc}{,start} Renumbers the lines from start to end; the new RENUM : RENUM 10,100
 {,end} first line number is new and subsequent line RENUM 1000,10,120,290

numbers are incremented by inc.

RESTORE {line#} Resets READ pointer to first DATA item or RESTORE
to the first DATA item at or following line#.

RESUME Exits error-handler and resumes execution RESUME
at the line where the error occurred.

RESUME line# Exits error-handler and resumes execution RESUME 120
at line#.

RESUME NEXT Exits error-handler and resumes execution at RESUME NEXT
the line following where the error occurred.

RETI Returns from ON TIME handling routine. RETI

RETURN Returns to program from a subroutine. RETURN

RIGHT$(sexpr,iexpr) Returns a string from the right of sexpr B$ = RIGHT$(A$,4)
with a length of iexpr.

RND Returns a random number between 0 and 1. X = RND

ROM = RAM prog2 Copies RAM program to permanent memory ROM = RAM 1
in Flash EPROM.

RUN {line#}{RAM prog} Executes current program or program prog RUN : RUN 110 : RUN RAM 1
at first line or line#. RUN 110 RAM 1

SCAN Not available on the Series 30/40 Workstations.

SDIM svar(len) Sets the maximum length of a string variable. SDIM A$(45) : SDIM C$(30/40),B$(20)

SGN(expr) Returns the sign of expr; (0 if expr = 0; X = SGN(A)
1 if expr > 0; –1 if expr < 0).

SIN(expr) Returns the sine. X = SIN(45)

SPC(iexpr) Prints iexpr spaces in a PRINT statement. PRINT SPC(4)

SQR(expr) Returns the square root. X = SQR(A)

D-6 Series 30/40 BASIC Guide

Command Description Examples

ST@ iexpr,var {,var} Stores var starting at memory address iexpr. ST@ 8163,A,X$

STOP Terminates program execution. STOP

STR$(expr) Converts expr to a string. A$ = STR$(X)

TAB(iexpr) Moves the cursor to position iexpr. PRINT TAB(12)

TAN(expr) Returns the tangent. X = TAN(A)

TIME Sets or returns the internal variable TIME PRINT TIME; CR;
(with a maximum value of 65535.995).

TIME$ Sets or returns the current time (“hh:mm:ss”). TIME$ = “15:34:00”

TONE Not available on the Series 30/40 Workstations.

TROFF Turns off tracing of program execution. TROFF

TRON Turns on tracing of program execution. TRON

VAD Returns the last address plus 1 used by ST@ VAD,X
the most recent ST@ or LD@. VAD = 8192 : LD@ VAD,A$

VAL(sexpr) Converts sexpr to a number. X = VAL(A$)

VARPTR(var) Returns the address in memory of var. X = VARPTR(A$)

VERSION Returns the current BASIC firmware version. X = VERSION

XBY(iexpr) Sets or retrieves an external memory byte. XBY(4012h) = 23

expr XOR expr Returns the logical XOR. C = A XOR B XOR C XOR D

Operators

Operator Description Examples

expr + expr Returns the sum. C = A + B : PRINT A + B

expr – expr Returns the difference. C = A – B : PRINT A – B – C : C = 3 – 2

expr * expr Returns arithmetic product. C = A * B : PRINT A * B * C : C = 3 * 2

expr / expr Returns arithmetic quotient. C = A / B : PRINT A / B / C : C = 3 /2

expr1 ^ expr2 Returns expr1 raised to exponent expr2. C = 45^3 : A = B ^ C

– expr Negates an expression. C = –A : C = –56 + A

expr = expr Compares two expressions for equality. X = 4 = 4 : REM X = 65535

expr <> expr Compares two expressions for non–equality. X = 4 <> 4 REM X = 0

expr1 < expr2 Compares expr1 for less than expr2. X = 3 < 4 : REM X = 65535

expr1 > expr2 Compares expr1 for greater than expr2. X = 3 > 4 : REM X = 0

expr1 <= expr2 Compares expr1 for less than or equal to expr2. X = 3 <= 4 : REM X = 65535

expr1 >= expr2 Compares expr1 for greater than or equal to expr2. X = 4 >= 4 : REM X = 65535

Reference D-7

CALLs

CALL Description Examples

CALL 12 Clears from cursor position to end of display. CALL 12

CALL 13 Clears from cursor position to end of line on display. CALL 13

CALL 30 Turn off the RTS line of COM1. CALL 30

CALL 33 Turn on the RTS line of COM1. CALL 33

CALL 38 Runs on-line configuration program. CALL 38

CALL 39 Runs monitor. CALL 39

CALL 40 Returns number of characters in port #1 receive buffer. CALL 40 : POP var

CALL 41 Returns number of characters in port #1 transmit buffer. CALL 41 : POP var

CALL 82 Prints a list of the variables used. CALL 82

Workstation Key Codes

The following table lists the ASCII codes and corresponding characters for
each key of the Workstation’s keypad. This table also lists the many two-
key combination characters that the Workstation supports:

Key(s) ASCII Code Character or Function
F1 ↵ 3 [Ctrl]-C
↓ 10 Line feed
↑ 11 Reverse line feed
↵ 13 Carriage return
+ 43 +
– 45 –
F1 F2 48 0
F2 ↑ 49 1
↑ + 50 2
+ x 51 3
F1 x 52 4
F3 F4 53 5
F4 ↓ 54 6
↓ – 55 7
– ↵ 56 8
F3 ↵ 57 9
x 127 Backspace
F1 241
F2 242
F3 243
F4 244
F1 F3 245
F2 F4 246
↑ ↓ 247
+ – 248
x ↵ 249

D-8 Series 30/40 BASIC Guide

CTRL Characters Sent to Workstation

The following table shows the function that the Workstation performs when it receives a
“control” character from the Console. You can create a control character by holding down the
[Ctrl] key while pressing another character.

Key Function ASCII Code

[Ctrl]-H Move cursor one space to the left 08h

[Ctrl]-I Move cursor one space to the right 09h

[Ctrl]-J Line Feed (move cursor down one line) 0Ah

[Ctrl]-K Reverse Line Feed (move cursor up one line) 0Bh

[Ctrl]-L Form Feed (clear screen and home cursor) 0Ch

[Ctrl]-M Carriage Return and, if enabled, Line Feed 0Dh

[Backspace] Backspace 7Fh

Ports

When communicating, the display and keyboard are also considered to be a port. The
following table summarizes the port names and numbers:

Name Number Description
COM0 0 Keypad and display
COM1 1 COM1 serial port

Appendix E

Error Codes

The following table shows the Workstation’s error codes. If you write an “ON ERROR”
routine, your routine must check the error code returned (ERR) as well as the line number
where the error occurred (ERL) in order to handle the error.
At the end of the table are “non-recoverable” errors; if one of these errors occurs, the
Workstation does not go to your error handler and instead simply stops program execution and
prints the error message.

Note While most errors occur while a specific statement is
executing, which means that you can easily detect its cause,
there are a few errors that can occur at any time which are
known as “asynchronous” errors.

Examples of asynchronous errors include buffer overflow
errors, which BASIC reports at the instant the buffer
overflows and without regard to the statement it is currently
executing.

When BASIC reports an asynchronous error, the error
number (ERR) is valid but the error line (ERL) is usually
irrelevant, because the error can occur at any time.

Asynchronous errors are noted in the table below with an
asterisk.

Code Error Message Description
1 BREAK User pressed [Ctrl]-C or [F1]-[↵]; a user-written error handling routine can

“trap” [Ctrl]-C to go to an appropriate point in the program.

10 DIVISION BY ZERO There’s still no mathematical definition for x/0.

20 OVERFLOW Floating point operation result exceeded ±.99999999E+127 or integer
operation result exceeded ± 65,535.

30 UNDERFLOW Floating point operation result was smaller than ± 1E-127.

40 BAD ARGUMENT Illegal address for DBY; invalid parameter or parameter format in OPEN or
REACT statement; invalid argument for TIME$ or DATE$; invalid parameter
for CHR$, LEFT$, RIGHT$, MID$, INPUT$ or INSTR$ statement (i.e.,
integer exceeds 255); bit number outside the range 1 to 16 in BIT statement;
bad argument in LOCATE statement; parameter greater than 255 in many
other statements.

50 TYPE MISMATCH Function that expects a string gets a number instead; a function that expects a
number gets a string instead; or a function that expects an integer gets a
floating point number instead.

E-2 Series 30/40 BASIC Guide

60 STRING TOO LONG String expression exceeds the maximum length assigned to the variable, or a
string operation resulted in an overflow of the string buffer. If the former, a
program can “truncate” the string; if the latter, you can break up a single
expression into several multiple expressions where each yields an intermediate
result.

For example, if LEN(E$) > 128, then the expression
E$ = LEFT$(E$,LEN(E$)) yields the error STRING TOO LONG because the
string buffer must hold E$ twice; once for the LEFT$ operator and once for the
nested LEN operator. This expression must be re-written using an
intermediate result, as in the following example: X = LEN(E$) : E$ =
LEFT$(E$,X).

70 * KEYBOARD BUFFER
OVERFLOW

Operator pressed enough keys to fill up the keyboard buffer. This message
occurs only when COM0 is opened with the IB parameter, and usually
indicates that the program fails to read the keyboard frequently enough.

72 KEYBOARD INPUT
TIMEOUT

Operator failed to press a key in response to an INPUT or INPUT$ statement
within the time period specified by the TD parameter in the OPEN statement
for COM0. This can be a useful error to generate so as not to leave a program
suspended while waiting for operator input.

75 I/O RACKS DISABLED;
CAN'T SCAN

Program contains a SCAN command; this command is not supported on the
Series 30/40 Workstations.

80 * COM1 RX OVERFLOW Workstation received a character when the 255-character buffer was already
full; to avoid this error, try implementing XON/XOFF or RTS handshaking
(use the RX or RH parameter in the OPEN command).

81 * COM1 TX TIMEOUT CTS input did not come active or XON was not received within the time
period specified by the CS or TX parameter; this occurs when the other device
is not connected properly, not operating properly, or the program doesn't wait
long enough for the other device to come ready.

83 * COM1 PARITY Parity error occurred during the reception of a character; this can happen
because of electrical noise or improper communication parameter settings.

85 COM1 INPUT TIMEOUT Workstation did not receive a character in response to an INPUT or INPUT$
statement within the time period specified by the TD parameter in the OPEN
statement for COM1. This can be a useful error to generate so as not to leave a
program suspended while waiting for input.

87 COM1 TRANSMIT
OVERFLOW

User program attempted to print to COM1 when the buffer is full. This can
occur subsequent to COM1 TRANSMIT HANDSHAKE TIMEOUT if the CTS
input is not asserted.

ARRAY SIZE In DIM statement, array size exceeds 254, string length exceeds 254, or
memory required exceeds memory available; otherwise, element number
exceeds number of elements in array.

A-STACK Too many levels of parentheses in an expression or PUSHes don’t match POPs
or CALLs that push and pop; if the former, break up the expression into
smaller expressions that yield intermediate results.

BAD PROGRAM
CHECKSUM

Program is scrambled and will not run; indicates possible problem with
electrical noise scrambling the memory.

Error Codes E-3

BAD SYNTAX Invalid command or statement, or variable name includes a reserved word.
CAN’T CONTINUE CONT won’t work if a program terminated normally or with an error; CONT

works only if a program terminates with a [Ctrl]-C.

CAN’T RESUME RESUME won’t work unless it’s at the end of an error-handling routine.
C-STACK Mismatch between variable following NEXT and the variable following the

corresponding FOR; UNTIL, WHILE, NEXT, RETURN or RETI without
corresponding control statement; too many levels of nesting; or end of program
found at end of DO or FOR statement. Also, use the CLEAR command from
within a subroutine clears all stacks, so the RETURN statement at the end of
the subroutine will cause a C-STACK error.

EXTRA IGNORED INPUT received either string input that exceeded the maximum string length
or received more numbers than INPUT expected.

I-STACK Expression is too complex for BASIC to handle. Almost invariably indicates
that an expression contains too many levels of parentheses. The solution is to
re-write the expression to eliminate nesting, re-write it so that higher-
precedence operators come first, or break it up into two or three expressions
that return intermediate values.

ILLEGAL DEFERRED Attempt to execute a command in the Run mode that executes only in the
Command mode, such as CONT.

ILLEGAL DIRECT Attempt to execute a command in the Command mode that executes only in
the Run mode, such as STOP or RESUME.

NO DATA Attempt to READ found no data, either because the program contains no
DATA statements or because previous READs have already exhausted all the
DATA statements. This can occur if you re-start a program with a GOTO
instead of RUN, so if you want to do that, put a RESTORE before the first
READ.

NO SUCH PROGRAM Reference to a program that doesn’t exist; for example, RAM1 = RAM 2 when
RAM 2 doesn’t exist or DEL RAM 3 when RAM 3 doesn’t exist.

REDIMENSION Program contains a DIM or SDIM for an array variable that already exists
either because of a previous DIM or because of a previous use that created the
array by default. This can occur when re-starting a program with a GOTO
instead of a RUN, but there is no remedy except to avoid executing the extra
DIM or SDIM statements.

ROM WRITE Attempt to write to a location in Flash EPROM that is already written.
OUT OF MEMORY Program has grown too large during editing or renumbering or the program

has created too many variables during execution.

STOP Program execution halted because of a STOP statement.

UNDEFINED LINE
NUMBER

GOTO, GOSUB, ON ... GOTO, ON ... GOSUB, ON TIME, or ON ERROR
refers to a line number that doesn't exist in the program.

* Indicates an asynchronous error that can occur at any time during program execution, without regard to the statement
BASIC is current executing. When an asynchronous error occurs, the error number (ERR) is valid but the error line
number (ERL) is irrelevant.

